MORPHOGENETIC CONSEQUENCES OF SHORT-TERM HEAT STRESS IN SHORT- AND LONG-LIVED LINES OF THE HOUSE FLY (MUSCA DOMESTICA L.): WING GEOMETRIC MORPHOMETRY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The morphogenetic consequences of short-term heat stress (SHS) were studied in two housefly lines that were massively selected for lifespan based on assessing the variability of the adult wing using geometric morphometry methods. Significant differences in wing size and shape were revealed between control and impact groups of different sexes in the Shg (short-lived) and Lg (long-lived) lines. The CTS effect manifested itself in an increase in the size of the wing and a directional change in its shape. The intergroup hierarchy of sex and stress-induced differences is expressed equally in both strains of flies. The range of linear differences is significantly higher than gender differences, which in turn are higher than the level of stress-induced ones. The instability of the adult wing development (Vm) of the Shg line is significantly higher than that of the Lg line, and higher in all groups of females, but in most cases significantly lower in impact groups (taking into account the increase in size, the latter may be associated with the effect of hormesis). It is hypothesized that the directed morphogenetic effects of CTS are based on hidden species-specific modifications, the appearance of which in the phenotype is caused by stress-induced epigenetic rearrangements of the genome, causing similar morphological changes in the wing in groups of males and females of adults of both lines. The phenotypic plasticity of lines during selection for different life spans and changes caused by CTC directly indicate the reality of stress-induced rapid morphogenetic rearrangements during a sharp change in environmental conditions.

About the authors

A. G. Vasil'ev

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: vag@ipae.uran.ru
Yekaterinburg, Russia

G. V. Ben'kovskaya

Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences

Email: vag@ipae.uran.ru
Russia Ufa

T. T. Akhmetkireeva

Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences

Author for correspondence.
Email: vag@ipae.uran.ru
Russia Ufa

References

  1. Жерихин В.В. Избранные труды по палеоэкологии и филоценогенетике. М.: Тов-во научн. изд. КМК, 2003. 542 с.
  2. Ceballos G., Ehrlich P.R., Barnosky A.D. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction // Science Advance. 2015. V. 1. № 5. e1400253. https://doi.org/10.1126/sciadv.1400253
  3. Parmesan C. Ecological and evolutionary responses to recent climate change // The Annual Review of Ecology, Evolution, and Systematics. 2006. V. 37. P. 637–669.
  4. Steffen W., Grinevald J., Crutzen P., McNeil J. The Anthropocene: conceptual and historical perspectives // Philosophical Transactions of the R. Soc. A. 2011. V. 369. P. 842–867.
  5. Alberti M. Eco-evolutionary dynamics in an urbanizing planet // Trends in Ecology and Evolution. 2015. V. 30. № 2. P. 114–126.
  6. McGill B.J., Enquist B.J., Weiher E., Westoby M. Rebuilding community ecology from functional traits // Trends in Ecology and Evolution. 2006. V. 21. № 4. P. 178–185.
  7. Violle C., Enquist B.J., McGill B.J. et al. The return of the variance: intraspecific variability in community ecology // Trends in Ecology and Evolution. 2012. V.27. № 4. P. 244–252.
  8. Mouillot D., Graham N.A.J., Villéger S. et al. A functional approach reveals community responses to disturbance // Trends in Ecology and Evolution. 2013. V. 28. № 3. P. 167–177.
  9. Fontaneto D., Panisi M., Mandrioli M. et al. Estimating the magnitude of morphoscapes: how to measure the morphological component of biodiversity in relation to habitats using geometric morphometrics // Sci. Nat. 2017. V. 104. № 55. P.1–11. https://doi.org/10.1007/s00114-017-1475-3
  10. Blonder B. Hypervolume concepts in niche- and trait-based ecology // Ecography. 2018. V. 41. P. 1441–1455.
  11. Васильев А.Г. Концепция морфониши и эволюционная экология. М.: Тов-во научн. изд. КМК, 2021. 316 с.
  12. West-Eberhard M.J. Developmental plasticity and evolution. Oxford: Oxford University Press, 2003, 816 p.
  13. Bonduriansky R. Rethinking heredity, again // Trends in Ecology and Evolution. 2012. V. 27. № 6. P. 330–336.
  14. Duncan E.J., Gluckman P.D., Dearden P.K. Epigenetics, plasticity and evolution: How do we link epigenetic change to phenotype? // J. Exp. Zool. Part B. Molecular and Developmental Evolution. 2014. V. 322. P. 208–220.
  15. Donelan S.C., Hellmann J.K., Bell A.M. et al. Transgenerational plasticity in human-altered environments // Trends in Ecology and Evolution. 2020. V. 35. № 2. P. 115–124.
  16. Herman J., Sultan S. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations // Front. Plant Sci. 2011. V. 2. № 102. P. 1–10.
  17. Bell A.M., Hellmann J.K. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity // Annual Rev. of Ecology Evolution and Systematics. 2019. V. 50. № 1. P. 1–22.https://doi.org/10.1146/annurev-ecolsys-110218-024613
  18. Jablonka E., Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution // Qvart. Rev. Biol. 2009. V. 84. P. 131–176.
  19. Becker C., Weigel D. Epigenetic variation: Origin and transgenerational inheritance // Curr. Opin. Plant. Biol. 2012. V. 15. P. 562–567.
  20. Bošković A., Rando O.J. Transgenerational epigenetic inheritance // Annual Rev. Genet. 2018. V. 52. P. 21–41.
  21. Rohlf F.J., Slice D. Extensions of the Procrustes method for the optimal superimposition of landmarks // Syst. Biol. 1990. V. 39. № 1. P. 40–59.
  22. Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L. Geometric Morphometrics for Biologists: A Primer. New York: Elsevier Acad. Press, 2004. 437 p.
  23. Klingenberg C.P. MorphoJ: an integrated software package for geometric morphometrics // Mol. Ecol. Resour. 2011. V. 11. P. 353–357.
  24. Zelditch M.L., Wood A.R., Bonett R.M. Swiderski D.L. Modularity of the rodent mandible: integrating bones, muscles, and teeth // Evolution and Development. 2008. V.10. P. 756–768.
  25. Sheets H.D., Zelditch M.L. Studying ontogenetic trajectories using resampling methods and landmark data // Hystrix, the Italian Journal of Mammalogy. 2013. V. 24. № 1. P. 67–73.
  26. Васильева Л.А., Юнакович Н., Ратнер В.А., Забанов С.А. Анализ изменений локализации МГЭ дрозофилы после селекции и температурного воздействия методом блот-гибридизации по Саузерну // Генетика. 1995. Т. 31. № 3. С. 333–341.
  27. Васильева Л.А., Антоненко О.В., Захаров И.К. Роль мобильных генетических элементов в геноме Drosophila melanogaster // Вавиловский журн. генетики и селекции. 2011. Т. 15. № 2. С. 225–260.
  28. Забанов С.А., Васильева Л.А., Ратнер В.А. Множественная индукция транспозиций МГЭ В104 тяжелым тепловым шоком у дрозофилы // Генетика. 1994. Т. 30. № 2. С. 218–224.
  29. Забанов С.А., Васильева Л.А., Ратнер В.А. Индукция транспозиций МГЭ Dm412 γ-облучением в изогенной линии Drosophila melanogaster // Генетика. 1995. Т. 31. № 6. С. 798–803.
  30. Biemont C., Terzian C. MDG-1 mobile element polymorphism in selected Drosophila melanogaster population // Genetica (Ned.). 1988. V. 76. № 1. P. 7–14.
  31. Biemont C., Vieira C. What transposable elements tell us about genome organization and evolution: the case of Drosophila // Cytogenet. Genome Res. 2005. V. 110. № 1/4. P. 25–34.
  32. Васильева Л.А. Влияние изогенизации на фенотипическое проявление количественных признаков у Drosophila melanogaster // Генетика. 2004. Т. 40. № 8. С. 1053–1057.
  33. Feder M.E., Hofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology // Annual Rev. Physiol. 1999. V. 61. P. 243–282.
  34. Åkerfelt M., MorimotoR.I., Sistonen L. Heat-shock factors: integrators of cell stress, development and lifespan // Nat. Rev. Mol. Cell Biol. 2010. V. 11. P. 545–555.
  35. Barua D., Heckathorn S.A. Acclimation of the temperature set-points of the heat-shock response // J. Therm. Biol. 2004. V. 29. P. 185–193.
  36. Machado H.E., Bergland A.O., O’Brien K.R. et al. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster // Molecular Ecology. 2016. V. 25. № 3. P. 723–740.
  37. Stratman R., Markow T.A. Resistance to thermal stress in desert Drosophila // Functional Ecology. 1998. V. 12. № 6. P. 965–970. https://doi.org/10.1007/s00114-017-1475-3
  38. Bogaerts-Márquez M., Guirao-Rico S., Gautier M., González J. Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of Drosophila melanogaster // Molecular Ecology. 2021. V. 30. № 4. P. 938–954.
  39. Debat V., Bégin M., Legout H., David J.R. Allometric and non-allometric components of Drosophila wing shape respond differently to developmental temperature // Evolution. 2003. V. 57. № 12. P. 2773–2784.
  40. Debat V., Debelle A., Dworkin I. Plasticity, canalization, and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature // Evolution. 2009. V. 63. № 11. P. 2864–2876.
  41. Bryant E.H. Morphometric adaptation of the housefly Musca domestica (L.) in the United States // Evolution. 1977. V. 31. P. 580–596.
  42. Bryant E.H., Turner C.R. Comparative morphometric adaptation of the housefly and face fly in United States // Evolution. 1978. V. 32. P. 759–770.
  43. Asiri B.M.K. The influence of environmental factors on biological parameters of Musca domestica (Diptera: Muscidae) // Internat. J. of Chinese Medicine. 2017. V. 1. № 3. P. 81–87.
  44. Ахметкиреева Т.Т., Беньковская Г.В., Васильев А.Г. Изменчивость формы и размеров крыла в селектированных по продолжительности жизни линиях Musca domestica L.: геометрическая морфометрия // Экологическая генетика. 2018. Т. 16. № 1. С. 35–44.
  45. Беньковская Г.В. Возможности и ограничения изменений продолжительности жизни в лабораторном эксперименте // Успехи геронтологии. 2010. Т. 23. № 3. С. 442–446.
  46. Беньковская Г.В., Мустафина Р.Ш. Влияние светового режима на биохимические показатели развития стресс-реакции в линиях Musca domestica L. с различной продолжительностью жизни // Журн. эволюц. биохимии и физиологии. 2012. Т. 48. № 5. С. 433–438.
  47. Ахметкиреева Т.Т., Беньковская Г.В., Китаев К.А., Долматова И.Ю. Комнатная муха как объект экологической генетики: структура лабораторной популяции и устойчивость к стрессовым воздействиям // Вестник Башкирского гос. аграрного ун-та. 2014. № 3. С. 34–37.
  48. Ахметкиреева Т.Т., Китаев К.А. Влияние кратковременного теплового стресса на показатели изменчивости в лабораторных линиях комнатной мухи // Экология. Генетика. Эволюция: Мат-лы Всероссийской конф. молодых ученых, посвящ. 115-летию Н.В. Тимофеева-Ресовского. Екатеринбург: Изд-во “Гощицкий”. 2015. С. 4–7.
  49. Rohlf F.J. TpsDig2, digitize landmarks and outlines, version 2.30. Department of Ecology and Evolution, State University of New York at Stony Brook.2017b (program).
  50. Rohlf F.J. TpsUtil, file utility program, version 1.74. Department of Ecology and Evolution, State University of New York at Stony Brook.2017a (program).
  51. Дэвис Д.С. Статистический анализ данных в геологии. Кн. 2. М.: Недра, 1990. 427 с.
  52. STATISTICA. StatSoft, Inc. (data analysis software system), version 10. 2011 (program).
  53. Lovich J.E., Gibbons J.W. A review of techniques for quantifying sexual size dimorphism // Growth, Development & Aging. 1992. V. 56. P. 269–281.
  54. Barber C.B., Dobkin D.P., Huhdanpaa H.T. The Quickhull algorithm for convex hulls // ACM Trans. on Mathematical Software. 1996. V. 22. № 4. P. 469–483.
  55. Cornwell W.K., Schwilk D.W., Ackerly D.A. A trait-based test for habitat filtering: convex hull volume // Ecology. 2006. V. 87. P. 1465–1471.
  56. Blonder B. Hypervolume. R package version 1.0.1.2019. [Электронный ресурс – URL: https://cran.r-project.org/package=hypervolume].
  57. Efron B., Tibshirani R. Bootstrap methods for standard errors. Confidence intervals and other measures of statistical accuracy // Statistical Science. 1986. V. 1. P. 54–77.
  58. Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis // Palaeontologia Electronica. 2001. V. 4. № 1. 9 p.
  59. Cohen J. A power primer // Psychological Bulletin. 1992. V. 112. № 1. P. 155–159. https://doi.org/10.1037/0033-2909.112.1.155
  60. Damuth J.D., Jablonski D., Harris R.M. et al. Taxon-free characterization of animal communities // Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals / Eds. Beherensmeyer A.K., Damuth J.D., DiMichele W.A. et al. Chicago, Illinois: University of Chicago Press, 1992. P. 183–203.
  61. Ким Дж.О., Мюллер Ч.У., Клекка У.Р. и др. Факторный, дискриминантный и кластерный анализ. М.: Финансы и статистика, 1989. 215 с.
  62. Кендалл М., Стьюарт А. Многомерный статистический анализ и временные ряды. М.: Наука, 1976. 736 с.
  63. Ayrinhac A., Debat V., Gibert P. et al. Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability // Functional Ecology. 2004. V. 18. P. 700–706.
  64. Berry R., López-Martínez G. A dose of experimental hormesis: When mild stress protects and improves animal performance // Review Comp. Biochem. Physiol. 2020. V. 242. 110658. https://doi.org/10.1016/j.cbpa.2020.110658
  65. Rix R.R., Cutler G.C. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects // Science of the Total Environment. 2022. V. 827. 154085. https://doi.org/10.1016/j.scitotenv.2022.154085
  66. Coulson S.J., Bale J.S. Characterisation and limitations of the rapid cold-hardening response in the housefly Musca domestica (Diptera: Muscidae) // Journal of Insect Physiology. 1990. V. 36. № 3. P. 207–211.
  67. Hercus M.J., Loeschcke V., Rattan S.I.S. Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress // Biogerontology. 2003. V. 4. P. 149–156.
  68. Sørensen J.G., Kristensen T.N., Kristensen K.V., Loeschcke V. Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster // Experimental Gerontology. 2007.V. 42. P. 1123–1129.
  69. Le Bourg E. A mild heat stress increases resistance to heat of dFOXO Drosophila melanogaster mutants but less in wild-type flies // Biogerontology. 2021. V. 22. P. 237–251.
  70. Никоноров Ю.М., Беньковская Г.В. Механизмы поддержания полиморфизма по продолжительности жизни в лабораторных линиях комнатной мухи // Успехи геронтологии. 2013. Т. 26. № 4. С. 594–600.
  71. Machado H.E., Bergland A.O., Taylor R. et al. Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila // eLife. 2021. V. 10. e67577. https://doi.org/10.7554/eLife.67577
  72. Тимофеев-Ресовский Н.В., Свирежев Ю.М. Об адаптационном полиморфизме в популяциях Adalia bipunctata // Проблемы кибернетики. М.: Наука, 1966. Вып. 16. С. 137–146.
  73. Шварц С.С. Экологические закономерности эволюции. М.: Наука, 1980. 277 с.
  74. Skidmore P. The biology of the Muscidae of the world // Dr. W. Junk. Series Entomologica. 1985. V. 29. P. 1–150.
  75. López-Martínez G., Hahn D.A. Early life hormetic treatments decrease irradiation-induced oxidative damage, increase longevity, and enhance sexual performance during old age in the Caribbean Fruit Fly // PLoS One. 2014. V. 9. № 1. e88128. https://doi.org/10.1371/journal.pone.0088128

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (394KB)
3.

Download (43KB)
4.

Download (119KB)
5.

Download (150KB)
6.

Download (585KB)
7.

Download (72KB)
8.

Download (53KB)

Copyright (c) 2023 А.Г. Васильев, Г.В. Беньковская, Т.Т. Ахметкиреева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies