Phylogeography of Oaks in the Crimea Reveals Pleistocene Refugia and Migration Routes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chloroplast DNA variability was examined in 872 trees of pedunculate oak (Q. robur L.), sessile oak (Q. petraea (Matt.) Liebl.) and downy oak (Q. pubescens Willd.) on the Crimean Peninsula, in the Western Caucasus and in the Balkan region in order to study phylogeography and interaction of these species in the Black Sea region. Sequencing of five fragments with a total length of more than 10,000 base pairs revealed 12 haplotypes of chloroplast DNA. For the haplotype typing in the studied populations, chloroplast microsatellites (cpSSR), sequencing, and restriction analysis were used. Haplotypes detected belong to several divergent phylogenetic lineages. The studied species almost do not differ from each other in the composition of haplotypes and the geographical structure of variability, which demonstrates a certain level of gene flow between them in mixed populations. The haplotypes of the Balkan region are closely related to the haplotypes of previously studied populations from Eastern Europe and the western part of the Russian Plain, and are not found in the Crimea and the Caucasus. On the Crimean Peninsula, two geographical groups of populations are distinguished, which differ sharply in the composition of haplotypes. The difference between the western part of the peninsula and the eastern part is shown, which suggests a multiple origin of oak populations in the Crimea as a result of migrations from two sources, which could be facilitated by fluctuations in the Black Sea level and its desalination, which repeatedly occurred in the Pleistocene and Holocene. The predominance of two divergent haplotypes in the western part of the peninsula, similar to the haplotypes of Asia Minor, indicates the penetration of oak from this region and the presence of an isolated refugium in the mountainous forest regions of Crimea during the last glacial maximum. At the same time, haplotypes common with the Western Caucasus are spread in the east of the mountain-forest part of the Eastern Crimea. The sharp boundary between the areas of distribution of “western” and “eastern” haplotypes in the Eastern Crimea indicates a relatively recent time of the formation of a secondary contact zone between local and Caucasian oak populations as a result of postglacial colonization.

About the authors

S. A. Semerikova

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: s.a.semerikova@ipae.uran.ru
Yekaterinburg, Russia

S. M. Podergina

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Email: s.a.semerikova@ipae.uran.ru
Yekaterinburg, Russia

A. N. Tashev

Department of Dendrology, Forestry University

Email: s.a.semerikova@ipae.uran.ru
Sofia, Bulgaria

V. L. Semerikov

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: s.a.semerikova@ipae.uran.ru
Yekaterinburg, Russia

References

  1. Дидух Я.П. Растительный покров горного Крыма (структура, динамика, эволюция и охрана). Киев: Наукова думка, 1992. 256 с.
  2. Ена А.В. Природная флора Крымского полуострова. Симферополь: Н. Орiанда, 2012. 232 с.
  3. Dufresnes C., Litvinchuk S.N., Leuenberger J. et al. Evolutionary melting pots: a biodiversity hotspot shaped by ring diversifications around the Black Sea in the Eastern tree frog (Hyla orientalis) // Mol. Ecol. 2016. V. 25. P. 4285–4300. https://doi.org/10.1111/mec.13706
  4. Ekhvaia J., Simeone M.C., Silakadze N., Abdaladze O. Morphological diversity and phylogeography of the Georgian durmast oak (Q. petraea subsp iberica) and related Caucasian oak species in Georgia (South Caucasus) // Tree Genet. Genom. 2018. V. 14. № 2. Article number 17. https://doi.org/10.1007/s11295-018-1232-6
  5. Tekpinar A.D., Aktas C., Kansu C. et al. Phylogeography and phylogeny of genus Quercus L. (Fagaceae) in Turkey implied by variations of trnT((UGU))-L-(UAA)-F ((GAA)) chloroplast DNA region // Tree Genet. Genom. 2021. V. 17. № 5. Article number 40. https://doi.org/10.1007/s11295-021-01522-x
  6. Кукушкин О.В., Ермаков О.А., Иванов А.Ю. и др. Филогеография прыткой ящерицы в Крыму по результатам анализа гена цитохрома b: древний рефугиум на полуострове, поздняя экспансия с севера и первые свидетельства гибридизации подвидов Lacerta agilis tauridica и L. a. exigua (Lacertidae: Sauria) // Труды ЗИН РАН. 2020. Т. 324. № 1. С. 56–99. https://doi.org/10.31610/trudyzin/2020.324.1.56
  7. Kukushkin O., Ermakov O., Gherghel I. et al. The mitochondrial phylogeography of the Crimean endemic lizard Darevskia lindholmi (Sauria, Lacertidae): Hidden diversity in an isolated mountain system // Vertebrate Zoology. 2021. V. 71. P. 559–576. https://doi.org/10.3897/vz.71.e62729
  8. Petit R.J., Csaikl U.M., Bordacs S. et al. Chloroplast DNA variation in European white oaks – phylogeography and patterns of diversity based on data from over 2600 populations // Forest Ecol. Management. 2002. V. 156. № 1–3. P. 5–26. https://doi.org/10.1016/S0378-1127(01)00645-4
  9. Petit R.J., Brewer S., Bordacs S. et al. Identification of refugia and postglacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence // Forest Ecol. Management. 2002. V. 156. P. 49–74. https://doi.org/10.1016/S0378-1127(01)00634-X
  10. Семерикова С.А., Исаков И.Ю., Семериков В.Л. Изменчивость хлоропластной ДНК и филогеография дуба черешчатого Quercus robur L. в восточной части ареала // Генетика. 2021. Т. 57. № 1. С. 56–71. [Semerikova S.A., Isakov I.Yu, Semerikov V.L. Chloroplast DNA variation and phylogeography of pedunculate oak Quercus robur L. in the eastern part of the range // Russ. J. Genet. 2021. V. 57. № 1. P. 47–60. doi: 10.1134/S1022795421010130] href='https://doi.org/10.31857/S0016675821010136' target='_blank'>https://doi.org/10.31857/S0016675821010136
  11. Degen B., Yanbaev Y., Mader M. et al. Impact of gene flow and introgression on the range wide genetic structure of Quercus robur (L.) in Europe // Forests. 2021. V. 12. № 10. Article number 1425. https://doi.org/10.3390/f12101425
  12. Тахтаджян А.Л. Флористические области Земли. Л.: Наука, 1978. 247 с.
  13. Гаркуша Л.Я., Багрова Л.А., Позаченюк Е.А. Разнообразие ландшафтов Крыма со средиземноморскими элементами флоры // Уч. зап. Таврического национального ун-та им. В.И. Вернадского. Серия “География”. 2012. Т. 25 (64). № 2. С.36–47.
  14. Леса СССР. М.: Наука, 1966. Т. 3 (Леса юга европейской части СССР и Закавказья). 463с. (СО АН СССР, Институт леса и древесины).
  15. Плугатарь Ю.В. Леса Крыма. Симферополь: ИТ “Ариал”, 2015. 385 с.
  16. Kremer A., Hipp A.L. Oaks: an evolutionary success story // New Phytologist. 2020. V. 226. № 4. P. 987–1011. https://doi.org/10.1111/nph.16274
  17. Меницкий Ю.Л. Дубы Азии. Л.: Наука,1984. 315 с. [Menitsky Y.L. Oaks of Asia. Science Publishers of Enfield Press, USA, 2005. 549 p.]
  18. Curtu A.L., Gailing O., Finkeldey R. Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community // BMC Evolutionary Biology. 2007. V. 7. Article number 218. https://doi.org/10.1186/1471-2148-7-218
  19. Семериков Л.Ф. Популяционная структура древесных растений (на примере видов дуба европейской части СССР и Кавказа). М.: Наука, 1986. 140 с.
  20. Gerasimenko N. Environmental changes in the Crimean mountains during the Last Interglacial–Middle Pleniglacial as recorded by pollen and lithopedology // Quat. Int. 2007. V. 164–165. P. 207–220. https://doi.org/10.1016/j.quaint.2006.12.018
  21. Gerasimenko N.P., Bezusko L.G., Avdieienko Y.L., Yanevich A.A. Late Glacial and Holocene vegetational and climate changes and their impact on material cultures in the Crimean Mountains (founded on pollen data from cave deposits) // Quat. Int. 2022. V. 632. № 20. P. 139–153. https://doi.org/10.1016/j.quaint.2021.12.018
  22. Cordova C.E., Gerasimenko N.P., Lehman P.H., Kliukin A.A. Late Pleistocene and Holocene paleoenvironments of Crimea: pollen, soils, geomorphology, and geoarchaeology // Geology and Geoarchaeology of the Black Sea Region: Beyond the Flood Hypothesis / Eds. Buynevich I.V., Yanko-Hombach V., Gilbert A.S., Martin R.E. Book series: Geological Society of America Special Paper. 2011. V. 473. P. 133–164. https://doi.org/10.1130/2011.2473(09)
  23. Markova A.K. Small mammals from Palaeolithic of the Crimea // Quat. Int. 2011. V. 231. № 1–2. P. 22–27. https://doi.org/10.1016/j.quaint.2010.07.016
  24. Cameron R.A.D., Pokryszko B.M., Horsak M. Forest snail faunas from Crimea (Ukraine), an isolated and incomplete Pleistocene refugium // Biological J. Linnean Soc. 2013. V. 109. P. 424–433. https://doi.org/10.1111/bij.12040
  25. Krijgsman W., Tesakov A., Yanina T. et al. Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution // Earth-Science Reviews. 2019. V. 188. P. 1–40. earscirev.2018.10.013https://doi.org/10.1016/j
  26. Doan K., Mackiewicz P., Sandoval-Castellanos E. et al. The history of Crimean red deer population and Cervus phylogeography in Eurasia // Zoological Journal of the Linnean Society. 2018. V. 183. № 2. P. 208–225. https://doi.org/10.1093/ZOOLINNEAN/ZLX065
  27. Mayol M., Riba M., González-Martínez S. C. et al. Adapting through glacial cycles: insights from a long-lived tree (Taxus baccata) // New Phytologist. 2015. V. 208. № 3. P. 973–986. https://doi.org/10.1111/nph.13496
  28. Gomory D., Paule L., Mačejovsky V. Phylogeny of beech in Western Eurasia as inferred by approximate Bayesian computation // Acta Soc. Botan. Poloniae. 2018. V. 87. № 2. P. 1–11. https://doi.org/10.5586/ asbp.3582
  29. Semerikov N.V., Petrova I.V., Sannikov S.N. et al. Cytoplasmic DNA variation does not support a recent contribution of Pinus sylvestris L. from the Caucasus to the main range // Tree Genetics & Genomes. 2020. V. 16. № 4. Article number 59. https://doi.org/10.1007/s11295-020-01458-8
  30. Семерикова С.А. Маркеры хлоропластной ДНК в исследовании филогеографии робуроидных дубов (Quercus L. sect. Quercus, Fagaceae) крымско-кавказского региона // Генетика. 2023. Т. 59. № 1. С. 50–64. doi: 10.31857/S0016675823010095
  31. Определитель высших растений Крыма. Под ред. Рубцова Н.И. Л.: Наука, 1972. 555 с.
  32. Devey M.E., Bell J.C., Smith D.N. et al. A genetic linkage map for Pinus radiata based on RFLP, RAPD and microsatellite markers // Theor. Appl. Genet. 1996. V. 92. № 6. P. 673–679. https://doi.org/10.1007/BF00226088
  33. Deguilloux M.F., Dumolin-Lapegue S., Gielly L. et al. A set of primers for the amplification of chloroplast microsatellites in Quercus // Mol. Ecol. Notes. 2003. V. 3 № 1. P. 24–27. https://doi.org/10.1046/j.1471-8286.2003.00339.x
  34. Hall T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT // Nucl. Acids Symp. Series. 1999. V. 41. P. 95–98.
  35. Excoffier L., Lischer H. ARLEQUIN ver. 3.5: An integrated software package for population genetics data analysis. Bern: Computational and Molecular population genetics Lab (CMPG). Institute of Ecology and Evolution, Univ. Bern, Bern, Switzerland, 2011. 174 p.
  36. Nei M. Molecular evolutionary genetics. N. Y.: Columbia University Press, 1987. 512 p.
  37. Ronquist F., Huelsenbeck J.P. MrBAYES 3: Bayesian phylogenetic inference under mixed models // Bioinformatics. 2003. V. 19. № 12. P. 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  38. Swofford D.L. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.0 beta10. Sunderland: Sinauer Associates, Massachusetts. 2002.
  39. Семерикова С.А., Исаков И.Ю., Семериков В.Л. Изменчивость хлоропластной ДНК отражает историю Tilia cordata s. l. в восточной части ареала // Генетика. 2020. Т. 56. № 2. С. 188–200. [Semerikova S.A., Isakov I.Yu, Semerikov V.L. Chloroplast DNA variation shed light on the history of lime tree (Tilia cordata s. l.) in the eastern part of the range // Russ. J. Genet. 2020. V. 56. № 2. P. 192–203. doi: 10.1134/s1022795420020118] href='https://doi.org/10.1134/S0016675820020113' target='_blank'>https://doi.org/10.1134/S0016675820020113
  40. Ingvarsson P.K., Ribstein S., Taylor D.R. Molecular evolution of insertions and deletion in the chloroplast genome of Silene // Mol. Biol. Evol. 2003. V. 20. № 11. P. 1737–1740. https://doi.org/10.1093/molbev/msg163
  41. Bandelt H.J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. 1999. V. 16. № 1. P. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  42. https://quercusportal.pierroton.inra.fr/index.php?p= GENOMIC_SEQ).
  43. Pham K.K., Hipp A.L., Manos P.S., Cronn R.C. A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny // Genome. 2017. V. 60. № 9. P. 720–732. https://doi.org/10.1139/gen-2016-0191
  44. Hipp A.L., Manos P.S., Hahn M. et al. Genomic landscape of the global oak phylogeny// New Phytologist. 2020. V. 226. № 4. P. 1198–1212. https://doi.org/10.1111/nph.16162
  45. Curtu A.L., Sofletea N., Toader A.V., Enescu M.C. Leaf morphological and genetic differentiation between Quercus robur L. and its closest relative, the drought-tolerant Quercus pedunculiflora K. Koch. // Annals of Forest Science. 2011. V. 68. № 7. P. 1163–1172. https://doi.org/10.1007/s13595-011-0105-z
  46. Atanassova A. Palaeoecological setting of the western Black Sea area during the last 15000 years // The Holocene. 2005. V. 15. P. 576–584. https://doi.org/10.1191/0959683605hl832rp
  47. Ferris C., King R.A., Vainola R., Hewitt G.M. Chloroplast DNA recognises three refugial sources of European oaks and shows independent eastern and western immigrations to Finland // Heredity. 1998. V. 80. P. 584–593.
  48. Jensen J.S., Gillies A., Csaikl U. et al. Chloroplast DNA variation within the Nordic countries // Forest Ecol. Management. 2002. V.156. P. 167–180. https://doi.org/10.1016/S0378-1127(01)00641-7
  49. Gomory D., Paule L., Krajmerova D. et al. Admixture of genetic lineages of different glacial origin: a case study of Abies alba Mill. in the Carpathians // Plant Syst Evol. 2012. V. 298. P. 703–712. https://doi.org/10.1007/s00606-011-0580-6
  50. Bolikhovskaya N.S., Porotov A.V., Richards K. et al. Detailed reconstructions of Holocene climate and environmental changes in the Taman Peninsula (Kuban River delta region) and their correlation with rapid sea-level fluctuations of the Black Sea // Quat. Int. 2018. V. 465. P. 22–36. https://doi.org/10.1016/j.quaint.2017.08.013

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (502KB)
4.

Download (76KB)

Copyright (c) 2023 С.А. Семерикова, С.М. Подергина, А.Н. Ташев, В.Л. Семериков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies