Assessment of the Limits of the Tolerance range and Optimal, Critically Low, and Critically High Salinity Zones according to the Indices of Osmotic and Ionic Homeostasis of Dreissena polymorpha

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Salinity is one of the leading environmental factors influencing the distribution of zebra mussel Dreissena polymorpha in natural conditions. The data on the tolerance range of salinity that were obtained by predecessors under field conditions and during experimental studies differ significantly. This makes it difficult to assess the possible range of distribution of zebra mussel under natural conditions and predict the possibility of its introduction to new water bodies. Using the indices of osmotic and ionic homeostasis as a research method, we have tried to estimate the tolerance range and optimal, critically low, and critically high salinity zones for D. polymorpha. The results can be used to predict the range of distribution of zebra mussel in nature and assess the physiological state of the mollusks in natural and laboratory conditions.

About the authors

V. I. Martem’yanov

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences

Author for correspondence.
Email: martem@ibiw.ru
Borok, Russia

References

  1. Davis A., Clegg C.J. Biology for the IB Diploma Study and Revision Guide. London: Hachette UK, 2017. 320 p.
  2. Некрасова М.Я. Эколого-биологическая характеристика доминирующих видов зообентоса в Таганрогском заливе Азовского моря // Гидробиол. журн. 1971. Т. 7. № 6. С. 49–55.
  3. Karatayev A., Burlakova L., Padilla D. Physical factors that limit the distribution and abundance of Dreissena polymorpha (Pall.) // J. Shellfish Res. 1998. V. 17. № 4. P. 1219–1235.
  4. Kilgour B.W., Mackie G.L., Baker M.A. Effects of salinity on the condition and survival of zebra mussels (Dreissena polymorpha) // Estuaries. 1994. V. 17. № 2. P. 385–393. https://doi.org/10.2307/1352671
  5. McMahon R.F. The Physiological ecology of the zebra mussel, Dreissena polymorpha, in North America and Europe // Amer. Zool. 1996. V. 36. P. 339–363. https://doi.org/10.1093/icb/36.3.339
  6. Карпевич А.Ф. Особенности размножения и роста двустворчатых моллюсков солоноватоводных морей СССР // Экология беспозвоночных южных морей СССР. М.: Наука, 1964. С. 3–60.
  7. Fong P.P., Kyozuka K., Duncan J. et al. The effect of salinity and temperature on spawning and fertilization in the zebra mussel Dreissena polymorpha (Pallas) from North America // Biol. Bull. 1995. V. 189. № 3. P. 320–329. https://doi.org/10.2307/1542149
  8. Horohov J., Silverman H., Lynn J. W., Dietz T. H. Ion Transport in the freshwater zebra mussel, Dreissena polymorpha // Biol. Bull. 1992. V. 183. № 2. P. 297‒303. https://doi.org/10.2307/1542216
  9. Dietz T.H., Wilcox S.J., Silverman H., Byrne R.A. Effects of hyperosmotic challenge on the freshwater bivalve Dreissena polymorpha: importance of K+ // Can. J. Zool. 1997. V. 75. № 5. P. 697–705. https://doi.org/10.1139/z97-090
  10. Byrne R.A., Dietz T.H. Ionic and acid-base consequences of exposure to increased salinity in the zebra mussel, Dreissena polymorpha // Biol. Bull. 2006. V. 211. P. 66–75.
  11. Мартемьянов В.И. Влияние минерального состава внешней среды на показатели водно-солевого обмена вселившейся в Рыбинское водохранилище дрейссены Dreissena polymorpha Pallas // Росс. журн. биол. инвазий. 2011. № 2. С.120–134. [Martemyanov V.I. Influence of environmental mineral composition on the indices of water – salt metabolism in Dreissena polymorpha Pallas introduced in the Rybinsk reservoir // Russ. J. Biol. Invasions. 2011. V. 2. P. 213–222. http://dx.doi.org/10.1134/S207511171103009X]
  12. Antsulevich A.E., Valipakka P., Vaittinen J. How are the zebra mussels doing in the Gulf of Finland? // Proc. Estonian Acad. Sci. Biol. Ecol. 2003. V. 52. № 3. P. 268–283.
  13. Wolff W.J. The mollusca of the estuarine region of the rivers Rhine, Meuse and Scheldt in relation to the hydrography of the area. II. The Dreissenidae // Basteria. 1969. V. 33. № 5–6. P. 93–103.
  14. van der Gaag M., van der Velde G., Wijnhoven S. et al. Salinity as a barrier for ship hull-related dispersal and invasiveness of dreissenid and mytilid bivalves // Mar. Biol. 2016. V. 163: 147. https://doi.org/10.1007/s00227-016-2926-7
  15. Mellina E., Rasmussen J.B. Patterns in the distribution and abundance of zebra mussel (Dreissena polymorpha) in rivers and lakes in relation to substrate and other physicochemical factors // Can. J. Fish. Aquat. Sci. 1994. V. 51. № 5. P. 1024–1036. https://doi.org/10.1139/f94-102
  16. Strayer D.L., Smith L.C. Distribution of the zebra mussel (Dreissena polymorpha) in estuaries and brackish waters // Zebra mussels: Biology, impacts, and control. Eds. Nalepa T.F. and Schloesser D.W. Lewis Publishers, CRC Press, Boca Raton, Florida, 1993. P. 715–727.
  17. Walton W.C. Occurrence of zebra mussel (Dreissena polymorpha) in the oligohaline Hudson River, New York // Estuaries. 1996. V. 19. № 3. P. 612–618. https://doi.org/10.2307/1352521
  18. Berezina N.A. Tolerance of freshwater invertebrates to changes in water salinity // Russ. J. Ecol. 2003. V. 34. P. 261–266. https://doi.org/10.1023/A:1024597832095
  19. Orlova M., Khlebovich V.V., Komendantov A.Y. Potential euryhalinity of Dreissena polymorpha (Pallas) and Dreissena bugensis (Andr.) // Russ. J. Aquat. Ecol. 1998. № 7. P. 17–28.
  20. Мартемьянов В.И. Механизмы регуляции клеточного объема эритроцитов карпа Cyprinus carpio (Cyprinidae) при повышении осмотической концентрации плазмы крови у рыб в зоне критической солености // Вопр. ихтиол. 2017. Т. 57. № 2. С. 223–229. [Martemyanov V.I. Mechanisms of regulation of erythrocyte volume in common carp Cyprinus carpio (Cyprinidae) at increase in the osmotic concentration of blood plasma within the zone of critical water salinity // J. Ichthyol. 2017. V. 57. №. 2. P. 306–312. https://doi.org/10.1134/S0032945217020114]https://doi.org/10.7868/S004287521702014X
  21. Мартемьянов В.И., Борисовская Е.В. Показатели водно-солевого обмена у вселившегося в Рыбинское водохранилище бычка-цуцика Proterorhinus marmoratus Pallas и аборигенного карпа Cyprinus carpio L. в зависимости от солености среды // Росс. журн. биол. инвазий. 2012. № 1. С. 46–57. [Martemyanov V.I., Borisovskaya E.V. Indices of salt and water metabolism in tubenose goby Proterorhinus marmoratus Pallas, introduced into Rybinsk reservoir, and in indigenous carp Cyprinus carpio L. depending on environmental salinity // Russ. J. Biol. Invasions. 2012. V. 3. № 2. P. 110–117. https://doi.org/10.1134/S2075111712020075]https://doi.org/10.13140/2.1.2316.5442
  22. Martemyanov V.I., Poddubnaya N.Y. Volume regulation of muscle cells in the carp Cyprinus carpio in response to hypernatremia // Bratisl. Med. J. 2019. V. 120. № 1. P. 52–57. https://doi.org/10.4149/BLL_2019_008
  23. Хлебович В.В. Критическая соленость биологических процессов. Л.: Наука, 1974. 236 с.
  24. Somero G.N. Protons, osmolytes, and fitness of internal milieu for protein function // Am. J. Physiol. 1986. V. 251. № 2. R197–R213. https://doi.org/10.1152/ajpregu.1986.251.2.R197
  25. Проссер Л. Сравнительная физиология животных. М.: Мир, 1977. Т. 1. 608 с.
  26. Мартемьянов В.И. Оценка статуса рыб по отношению к солености среды на основе типов осмотической и ионной регуляции // Труды Зоол. ин-та РАН. Приложение № 3. 2013. С. 175–181.
  27. Мартемьянов В.И. Стресс как источник ошибок при эколого-физиологических и биохимических исследованиях рыб // Оценка погрешностей методов гидробиологических и ихтиологических исследований. Рыбинск: ИБВВ РАН, 1982. С. 124–134.
  28. Martemyanov V.I. The dynamics of the sodium, potassium, calcium, magnesium contents in the fresh water mollusc zebra mussel Dreissenia polymorpha during stress // J. Evol. Biochem. Physiol. 2000. V. 36. № 1. P. 41–46. https://doi.org/10.1007/BF02890664
  29. Виноградов Г.А., Мартемьянов В.И., Щеглова Н.Б. Влияние экологических факторов на показатели водно-солевого обмена дрейссены Dreissena polymorpha. Эффект изменения температуры воды // Биология внутренних вод. 2004. № 1. С. 48–52.
  30. Dietz T.H., Lessard D., Silverman H., Lynn J.W. Osmoregulation in Dreissena polymorpha: the importance of Na, Cl, K, and particularly Mg // Biol. Bull. 1994. V. 187. P. 76–83. https://doi.org/10.2307/1542167
  31. Wilcox S., Dietz T. Potassium transport in the freshwater bivalve Dreissena polymorpha // J. Exp. Biol. 1995. V. 198. P. 861–868. https://doi.org/10.1242/jeb.198.4.861

Copyright (c) 2023 В.И. Мартемьянов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies