Dispersal of Common Shrews (Sorex Araneus L.): The Dream and “An Accident”

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Understanding the processes that affect the dispersal distance is essential from perspective of ecology and evolution. It is essential to understand processes that affect dispersal distances. Dispersal distances can may depend on environmental and demographic factors and on the motivation of an individual. Effective dispersal results in the distribution of related genotypes in space. The distribution of pairwise distances between related common shrews (sibs and half-sibs) is characterized by a nonrandom increase in the number of relatives at distances up to 200 m. Aggregations of relatives are formed in a part of individuals dispersed in a random direction to the nearest available home rang (“stright-line search”). The distribution of all distances between relatives (up to 1200 m) is satisfactorily approximated by the straight-line search model and is not consistent with the “spiral search” model as it is; however, the best match can be achieved by combining these two search types. The latter model variant (“mixed search”) assumes that the population includes animals with different personal traits: “superficial” and “thorough” explorers. Thorough explorers search for a vacant territory employing the spiral search strategy and correspond to “dreamers” in the model describing the movement and habitat selection strategy (MHSS). If vacant territories are in deficit and the environment is favorable, dreamers move over long distances and become randomly distributed in space: a random dispersion of related genotypes was recorded at distances from 200 to 1200 m. Therefore, searches for a dream territory in combination with a shortage of vacant territories (an accident) result in a random dispersal of related genotypes within a radius of at least 1200 m. The combination of temporal aggregations of relatives and the dispersal of related genotypes over a vast area explain well the previously discovered combination of an excess of homozygous alleles and a high allelic diversity.

About the authors

N. A. Shchipanov

Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: shchipa@mail.ru
Moscow, Russia

References

  1. Stenseth N.C., Lidicker W.Z. The study of dispersal: a conceptual guide // Animal Dispersal. Dordrecht: Springer, 1992. P. 5–20.
  2. Dieckmann U., O’Hara B., Weisser W. The evolutionary ecology of dispersal // Trends in Ecology and Evolution. 1999. V. 14. № 3. P. 88–90.
  3. Bowler D.E., Benton T.G. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics // Biological Reviews. 2005. V. 80. № 2. P. 205–225.
  4. Clobert J., Baguette M., Benton T.G., Bullock J.M. Dispersal ecology and evolution. Oxford: Oxford University Press, 2012. 462 p.
  5. Cayuela H., Rougemont Q., Prunier J.G. et al. Demographic and genetic approaches to study dispersal in wild animal populations: A methodological review // Molecular Ecology. 2018. V. 27. № 20. P. 3976–4010.
  6. Benton T.G., Bowler D.E. Linking dispersal to spatial dynamics // Dispersal ecology and evolution / Eds. Clobert J., Baguette M., Benton T.G., Bullock J.M. Oxford: Oxford University Press, 2012. P. 251–265.
  7. Ronce O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution // Annu. Rev. Ecol. Evol. Syst. 2007. V. 38. P. 231–253.
  8. Baguette M., Stevens V.M., Clobert J. The pros and cons of applying the movement ecology paradigm for studying animal dispersal // Movement Ecology. 2014. V. 2. № 1. P. 1–13.
  9. Mathyssen E. Multicausality of dispersal: a review // Dispersal ecology and evolution. Eds. Clobert J., Baguette M., Benton T.G., Bullock J.M. Oxford: Oxford University Press, 2012. P. 3–18.
  10. Markov N.I., Ivanko E.E. “Perchance to dream?”: Assessing the effects of dispersal strategies on the fitness of expanding populations // Ecological Complexity. 2022. V. 50. P. 100987.
  11. Peakall R., Ruibal M., Lindenmayer D.B. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes // Evolution. 2003. V. 57. № 5. P. 1182–1195.
  12. Chapman D.S., Dytham C., Oxford G.S. Modelling population redistribution in a leaf beetle: an evaluation of alternative dispersal functions // Journal of Animal Ecology. 2007. V. 76. № 1. P. 36–44.
  13. Smouse P.E, Peakall R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure // Heredity. 1999. V. 82. P. 561–573.
  14. Lynch M., Ritland K. Estimation of pairwise relatedness with molecular markers // Genetics. 1999. V. 152. P. 1753–1766.
  15. Wang J. An estimator for pairwise relatedness using molecular markers // Genetics. 2002. V. 160. № 3. P. 1203–1215.
  16. Wang J. Marker-based estimates of relatedness and inbreeding coefficients: an assessment of current methods // Journal of Evolutionary Biology. 2014. V. 27. № 3. P. 518–530.
  17. Ronce O., Clobert J. Dispersal syndromes // Dispersal ecology and evolution. Eds. Clobert J., Baguette M., Benton T.G., Bullock J.M. Oxford: Oxford University Press, 2012. P. 119–138.
  18. Stevens V.M., Trochet A., Van Dyck H. et al. How is dispersal integrated in life histories: a quantitative analysis with butterflies // Ecol. Lett. 2012. V. 15. P. 74–86.
  19. Murray B.G., Jr. Dispersal in vertebrates // Ecology. 1967. V. 48. № 6. P. 975–978.
  20. Waser P.M. Does competition drive dispersal? // Ecology. 1985. V. 66. № 4. P. 1170–1175.
  21. Shchipanov N.A., Demidova T.B. Inter-annual fluctuations of sociability in the common shrew (Sorex araneus L.) as determined by a preference test: A case of balancing selection? // Behavioural Processes. 2022. V. 198. P. 104 625.
  22. Щипанов Н.А., Артамонов А.В., Титов С.В., Павлова С.В. Пространственно-генетическое структурирование популяции у обыкновенной бурозубки Sorex araneus (Lipotyphla, Mammalia): изменчивость микросателлитных маркеров // Генетика. 2020. Т. 56. № 8. С. 922–932.
  23. Shchipanov N.A., Demidova T.B., Artamonov A.V., Pavlova S.V. Seasonal and interannual survivorship in the common shrew: the early bird catches the worm // Mammalian Biology. 2022. V. 102. № 1. P. 73–85.
  24. Smouse R.P.P., Peakall R. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research — an update // Bioinformatics. 2012. V. 28. № 19. P. 2537–2539.
  25. Churchfield S., Searle J.B. Common shrew // Mammals of the British Isles. Handbook. 4th edn. Eds. Harris S., Yalden D.W. London: The Mammal Society, 2008. P. 257–265.
  26. Shchipanov N.A., Artamonov A.V., Demidova T.B. Body weight as an indicator of the reproduction rate in population of the common shrew // Mammal Research. 2021. V. 66. № 2. P. 327–337.
  27. Shchipanov N.A., Artamonov A.V., Titov S.V., Pavlova S.V. Fluctuating fine-scale spatial genetic structure may obscure interracial differentiation among common shrews (Sorex araneus, Eulipotyphla, Mammalia). Integrative Zoology. Sep 2. Online ahead of printhttps://doi.org/10.1111/1749-4877.12681
  28. Калинин А.А. Оседлая и нерезидентная составляющая численности массовых видов мелких млекопитающих по данным учета на линиях живоловок // Зоол. журн. 2012. Т. 91. Вып. 6. С. 759–759.
  29. Shchipanov N.A., Kalinin A.A., Demidova T.B. et al. Population ecology of red-toothed shrews, Sorex araneus, S. caecutiens, S. minutus, and S. isodon, in Central Russia // Advances in the biology of shrews II. Eds. Merrit J. F., Churchfield S., Hutterer R., Sheftel B. New York: Special Publication of the International Society of Shrew Biologists, 2005. P. 201–216
  30. Щипанов Н.А. Случайные процессы и использование территории обыкновенной бурозубкой (Sorex araneus L.) // Экология, 2021. № 2. С. 153–160.
  31. Shchipanov N.A., Zima J., Churchfield S. Introducing the common shrew // Shrews, chromosomes and speciation. Eds. Searle J.B., Polly P.D., Zima J. Cambridge University Press, 2019. V. 6. P. 19–67.
  32. Beck N.R., Peakall R., Heinsohn R. Social constraint and an absence of sex-biased dispersal drive fine-scale genetic structure in white-winged choughs // Molecular Ecology. 2008. V. 17. №19. P. 4346–4358.
  33. Nichols H.J., Jordan N.R., Jamie G.A. et al. Fine-scale spatiotemporal patterns of genetic variation reflect budding dispersal coupled with strong natal philopatry in a cooperatively breeding mammal // Molecular Ecology. 2012. V. 21. № 21. P. 5348–5362.
  34. Rychlik L. Evolution of social systems in shrews // Evolution of Shrews. Eds. Wójcik J.M., Wolsan M. Białowieża: Mammal Reaearch Institute, 1998. P. 347–406.
  35. Купцов А.В. Хоминг сеголеток обыкновенной (Sorex araneus) и средней (Sorex caecutiens) землероек-бурозубок (Insectivora, Soricidae) // Зоол. журн. 2013. Т. 92. Вып. 8. С. 941–941.
  36. Yannic G., Basset P., Horn A., Hausser J. Gene flow between chromosomal races and species // Shrews, chromosomes and speciation. Eds. Searle J.B., Polly P.D., Zima J. Cambridge University Press, 2019. V. 6. P. 313–335.
  37. Hanski I., Peltonen A., Kaski L. Natal dispersal and social dominance in the common shrew Sorex araneus // Oikos. 1991. V. 62. P. 48–58.
  38. Калинин А.А., Куприянова И.Ф. Методика количественного учета мелких млекопитающих при миграциях через водные преграды // Зоол. журн. 2015. Т. 94. Вып. 3. С. 365–365.
  39. Калинин А.А., Куприянова И.Ф. Мелкие млекопитающие в питании европейского хариуса (Thymallus thymallus, Thymallidae, Salmoniformes) // Зоол. журн. 2016. Т. 95. Вып. 6. С. 712–719.
  40. Олейниченко В.Ю. Поведение сеголеток обыкновенной (Sorex araneus), средней (Sorex caecutiens) и малой (Sorex minutus) бурозубок на освоенной и чужой территориях // Зоол. журн. 2007. Т. 86. Вып. 10. С. 1259–1271.
  41. Олейниченко В.Ю. Поведенческие взаимоотношения взрослых самок обыкновенной бурозубки (Sorex araneus) с конспецификами на освоенной территории // Известия РАН. Серия биологич. 2012. № 4. С. 412–420.
  42. Ивантер Э.В., Макаров А.М. Территориальная экология землероек-бурозубок (Insectivora, Sorex). Петрозаводск: ПетрГУ, 2001. 272 с.
  43. Лукьянова Л.Е., Ухова Н.Л., Ухова О.В., Городилова Ю.В. Население обыкновенной бурозубки (Sorex araneus, Eulipotyphla) и кормообеспеченность ее местообитаний в экологически контрастной среде // Экология. 2021. № 4. С. 298–311.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (159KB)
3.

Download (191KB)
4.

Download (469KB)
5.

Download (108KB)

Copyright (c) 2023 Н.А. Щипанов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies