Accumulation of Low-Molecular-Weight Compounds in Plants in Response to Technogenic Soil Salinization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In south-taiga conditions, the plant community developing on a technogenically salinized alluvial soil is represented by ruderal species from the local flora. It was found that species-specific reactions of plants to progressive soil salinization are manifested in the accumulation of low-molecular-weight compounds: oakleaved goosefoot (Chenopodium glaucum L.) accumulates proline and glycine betaine; spear saltbush (Atriplex patula L.), proline; weeping alkaligrass (Puccinellia distans (Jacq.) Parl.), flavonoids; and toad rush (Juncus bufonius L.), glycine betaine. On acidic saline soils, an elevated proline content was recorded in spear saltbush leaves, and the accumulation of flavonoids was noted in weeping alkaligrass.

About the authors

O. A. Chetina

Perm State University

Email: lymar11@rambler.ru
Perm, Russia

O. Z. Eremchenko

Perm State University

Email: lymar11@rambler.ru
Perm, Russia

I. V. Pakhorukov

Perm State University

Author for correspondence.
Email: lymar11@rambler.ru
Perm, Russia

References

  1. Piernik A., Hulisz P., Rokicka A. Micropattern of halophytic vegetation on technogenic soils affected by the soda industry // Soil Science and Plant Nutrition. 2015. V. 61. P. 98–112. https://doi.org/10.1080/00380768.2015.1028874
  2. Шишконакова Е.А. Антропогенная растительность территорий предприятий ОАО “Уралкалий” (Пермская область) // Социально-экологические технологии. 2017. № 3. С. 65–79.
  3. Розенцвет О.А., Нестеров В.Н., Богданова Е.С. Структурные и физиолого-биохимические аспекты солеустойчивости галофитов // Физиология растений. 2017. Т. 64. № 4. С. 251–265.
  4. Веселов Д.С., Маркова И.В., Кудоярова Г.Р. Реакция растений на засоление и формирование солеустойчивости // Успехи современной биологии. 2007. Т. 127. № 5. С. 482–493.
  5. Карташов А.В., Радюкина Н.Л., Иванов Ю.В. и др. Роль систем антиоксидантной защиты при адаптации дикорастущих видов растений к солевому стрессу // Физиология растений. 2008. Т. 55. № 4. С. 516–522.
  6. Chen S., Xing J., Lan H. Comparative effects of neutral salt and alkaline salt stress on seed germination, early seedling growth and physiological response of a halophyte species Chenopodium glaucum // African J. of Biotechnology. 2012. V. 11. № 40. P. 9572–9581. https://doi.org/10.5897/AJB12.320
  7. Колупаев Ю.Е., Карпец Ю.В. Активные формы кислорода, антиоксиданты и устойчивость растений к действию стрессоров. Киев: Логос, 2019. 277 с.
  8. Sakamoto A., Murata N. The role of glycine betaine in the protection of plants from stress: clues from line content in salt stressed spinach leaves // Plant Growth Regul. 2003. V. 40. P. 89–95.
  9. Mansour M.M.F., Salama K.H.A., Ali F.Z.M. et al. Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance // Gen. Appl. Plant Physiol. 2005. V. 31. № 1–2. P. 29–41.
  10. Yan H., Zhao W., Sheng Y. et al. Effects of alkali-stress on Aneurolepidium chinense and Helianthus annuus // The J. of Applied Ecology. 2005. V. 16 (8). P. 1497–1501.
  11. Тараховский Ю.С., Музафаров Е.Н., Ким Ю.А. Взаимодействие флавоноидов с мембранами // Фенольные соединения: фундаментальные и прикладные аспекты. 2010. С. 108–116.
  12. Liu J., Guo Q., Shi D.C. Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions // Photosynthetica. 2010. V. 48 (2). P. 278–286. https://doi.org/10.1007/s11099-010-0034-3
  13. Brunetti C., di Ferdinando M., Fini A. et al. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans // Int. J. Mol. Sci. 2013. V. 14 (2). P. 3540–3555. https://doi.org/10.3390/ijms14023540
  14. Carvalho K., Campos M.K., Domingues D.S. et al. The accumulation of endoge-nous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo // Molecular Biology Reports. 2013. V. 40 (4). P. 3269–3279. https://doi.org/10.1007/s11033-012-2402-5
  15. Назарова В.Д., Бакумова Е.В., Бектемисова А.У. Антиоксидантная активность флавоноидов // Актуальные проблемы науки и образования в области естественных и сельскохозяйственных наук: Мат-лы ІIІ междун научно-практич. конф., посвященной 90-летию академика Е.А. Букетова. Петропавловск, 2015. С. 111–114.
  16. Рахманкулова З.Ф., Шуйская Е.В., Щербаков А.В. и др. Содержание пролина и флавоноидов в побегах галофитов, произрастающих на территории Южного Урала // Физиология растений. 2015. Т. 62. № 1. С. 79–88.
  17. Guo R, Yang Z., Li F., Yan C. et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress // BMC Plant Biol. 2015. P. 170. https://doi.org/10.1186/s12870-015-0546-x
  18. Annunziata M.G., Ciarmiello L.F., Woodrow P. et al. Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses //Frontiers in Plant Science. 2019. V. 10. P. 230. https://doi.org/10.3389/fpls.2019.00230
  19. Еремченко О.З., Лымарь О.А. Почвенно-экологические условия зоны солеотвалов и адаптация к ним растений // Экология. 2007. № 1. С. 18–23.
  20. Еремченко О.З., Четина О.А., Кусакина М.Г. и др. Техногенные поверхностные образования зоны солеотвалов и адаптация к ним растений. Пермь: Перм. гос. нац. исслед. ун-т, 2013. 148 с.
  21. Eremchenko O.Z., Pakhorukov I.V., Shestakov I.E. Development of the solonchak process in soils of small river valleys in the taiga-forest zone in relation to the production of potassium salts // Eurasian Soil Science. 2020. V. 53. № 4. P. 512–522. https://doi.org/10.1134/S1064229320040055
  22. Пахоруков И.В., Еремченко О.З. Свойства вторично засоленных аллювиальных почв в таежно-лесной зоне Прикамья // Сибирский лесной журн. 2021. № 3. С. 76–86. https://doi:10.15372|SJFS20210307
  23. Latef A.A.A., Tran L.S. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress // Frontiers in Plant Science. 2016. V. 7. P. 243–256. https://doi.org/10.3389/fpls.2016.00243
  24. Bhuyan M.H.M., Hasanuzzaman M., Mahmud J.A. et al. Unraveling morphophysiological and biochemical responses of Triticum aestivum L. to extreme pH: Coordinated actions of antioxidant defense and glyoxalase systems // Plants. 2019. V. 8. № 1. P. 24. https://doi.org/10.3390/ plants8010024
  25. Chetina O.A., Botalova K.I., Kaigorodov R.V. Effects of alkalinity and acidity of the root medium on defense systems in Triticum aestivum and Secale cereale // Russ. J. of Plant Physiology. 2020. V. 67 (2). P. 334–343. https://doi.org/10.1134/S1021443720010033
  26. Tomar P. Estimation of some biochemical parameters in Lycopersicon lycopersicum (L.) cv. damyanti in response to acid rain // Voyager. 2018. V. 9. P. 34–41.
  27. Чернавина И.А., Потапов Н.Г., Косулина Л.Г. и др. Большой практикум по физиологии растений. Минеральное питание. Физиология клетки. Рост и развитие: Учеб. пособие для студентов биол. спец. вузов / Под ред. Рубина Б.А. М.: Высшая школа, 1978. 408 с.
  28. Bates L., Waldren P.P., Teare J.D. Rapid determination of proline of water stress studies // Plant Soil. 1973. V. 39 (1). P. 205–207.
  29. Grieve C.M., Grattan S.R. Rapid assay for determination of water soluble quaternary ammonium compounds // Plant Soil. 1983. V. 70. P. 303–307.https://doi.org/10.1007/BF02374789
  30. Ungar I. Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae) // American J. of Botany. 1996. V. 83. № 5. P. 604–607.
  31. Tarasoff C.S., Mallory-Smith C.A., Ball D.A. Comparative plant responses of Puccinellia distans and Puccinellia nuttalliana to sodic versus normal soil types //Journal of Arid Environments. 2007. V. 70. № 3. P. 403–417. https://doi.org/10.1016/j.jaridenv.2007.01.008
  32. Erfanzadeh R., Hendrickx F., Maelfait J. P. et al. The effect of successional stage and salinity on the vertical distribution of seeds in salt marsh soils //Flora-Morphology, Distribution, Functional Ecology of Plants. 2010. V. 205. № 7. P. 442–448. https://doi.org/10.1016/j.flora.2009.12.010
  33. Genc Y., Taylor J., Lyons G. et al. Bread wheat with high salinity and sodicity tolerance // Frontiers in Plant Science. 2019. V. 10. P. 1280. https://doi.org/10.3389/fpls.2019.01280
  34. Aslam R., Bostan N., Nabgha-e-Amen M. et al. A critical review on halophytes: salt tolerant plants // J. of Medicinal Plants Research. 2011. V. 5. P. 7108–7118. https://doi.org/10.5897/JMPRx11.009
  35. Захарин А.А., Паничкин Л.А. Модель протонного барьера. Полная односторонняя непроницаемость клеток корня для воды под влиянием избытка протонов в апопласте // Вестник ТСХА. 2005. Вып. 3. С. 69–82.
  36. Zhu J.K. Plant salt tolerance // Trends Plant Science. 2001. V. 6. P. 66–71. https://doi.org/10.1016/S1360-1385(00)01838-0
  37. Krishnan N., Dickman M.B., Becker D.F. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress // Free Radical Biology and Medicine. 2008. V. 44. P. 671−681. https://doi.org/10.1016/j.freeradbiomed.2007.10.054
  38. Edreva A., Velikova V., Tsonev T. et al. Stress-protective role of secondary metabolites: diversity of functions and mechanisms // General and Applied Plant Physiology. 2008. V. 34. P. 67–78.
  39. Shavrukov Y., Hirai Y. Good and bad protons: genetic aspects of acidity stress responses in plants / J. of Experimental Botany. 2016. V. 67. № 1. P. 15–30. https://doi.org/10.1093/jxb/erv437

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (170KB)
3.

Download (75KB)
4.

Download (53KB)
5.

Download (57KB)
6.

Download (58KB)
7.

Download (92KB)

Copyright (c) 2023 О.А. Четина, О.З. Еремченко, И.В. Пахоруков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies