Energy Metabolism of Crustaceans (Amphipoda) from the Northern Populations (White Sea Basin)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cold waters and low productivity of the reservoir create energetically special conditions for the life of aquatic organisms, which are exacerbated by the current climate change. The temperature-dependent indicators of energy metabolism (active metabolic rate) have been studied for the representatives of different ecological– iogeographic groups of amphipods: arctic (Gammaracanthus loricatus), palearctic (Gammarus zaddachi), and holarctic (G.lacustris), from the coastal lake and the littoral of the White Sea basin. Interspecific differences in the standard energy metabolism rate and its 1.5–2.0-fold increase for predating amphipods are found.

About the authors

N. A. Berezina

Zoological Institute, Russian Academy of Sciences

Author for correspondence.
Email: nadezhda.berezina@zin.ru
St. Petersburg, Russia

References

  1. Brown J.H., Gillooly J.F., Allen A.P. et al. Toward a metabolic theory of ecology// Ecology. 2004. V. 85. P. 1771–1789.
  2. Glazier D.S. Beyond the “3/4-power law”: Variation in the intra- and interspecific scaling of metabolic rate in animals// Biol. Rev. 2005. V. 80. P. 611–662.
  3. Huey R.B., Stevenson R.D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches // Integr. Comp. Biol. 1979. V. 19. P. 357–366.
  4. Pörtner H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems// J. Exp. Biol. 2010. V. 213. P. 881–893.
  5. Pörtner H.-O., Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance// Science. 2007. V. 315. P. 95–97.
  6. Angilletta M.J. Thermal adaptation: A theoretical and empirical synthesis. Oxford: Oxford University Press, 2009. https://doi.org/10.1093/acprof:oso/9780198570875.001.1
  7. Pörtner H.-O., Farrell A.P. Physiology and climate change// Science. 2008. V. 322. P. 690–692. https://doi.org/10.1126/science.1163156
  8. Magozzi S., Calosi P. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming// Glob. Chang. Biol. 2015. V. 21. P. 181–194.
  9. Penk M., Irvine K., Donohue I. Ecosystem-level effects of a globally spreading invertebrate invader are not moderated by a functionally similar native// J. Anim. Ecol. 2015. V. 84. P. 1628–1636. https://doi.org/10.1111/1365-2656.12402
  10. Peck L.S., Morley S.A., Richard J., Clark M.S. Acclimation and thermal tolerance in Antarctic marine ectotherms// J. Exp. Biol. 2014. V. 217. P. 16–22.
  11. Berezina N., Kalinkina N., Maximov A. Distribution and functional ecology of malacostracan crustaceans in Russian northern and arctic lakes // Lake Water: properties and uses (Case studies of hydrochemistry and hydrobiology of lakes in northwest Russia). Eds. Pokrovsky O.S., Bespalaya Y., Shirokova L.S., Vorobyeva T.Y. New York: Nova Science Publishers, 2021. P. 229–248.
  12. Pörtner H.-O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals// Comp. Biochem. Physiol. Part A. 2002. V. 132. P. 739–761.
  13. Peck L.S. Ecophysiology of Antarctic marine ectotherms: limits to life// Ecological studies in the Antarctic sea ice zone. Eds. Arntz W.E., Clarke A. Berlin, Heidelberg: Springer, 2002. P. 221–230. https://doi.org/10.1007/978-3-642-59419-9_29
  14. Guderley H. Metabolic responses to low temperature in fish muscle// Biol. Rev. Camb. Philos. Soc. 2004. V. 79. P. 409–427.
  15. Scholander P.F., Flagg W., Walters V., Irving L. Climatic adaptation in Arctic and tropical poikilotherms// Physiol. Zool. 1953. V. 26. P. 67–92. https://doi.org/10.1086/PHYSZOOL.26.1.30152151
  16. Wohlschlag D.E. Respiratory metabolism and ecological characteristics of some fishes in McMurdo Sound, Antarctica // Antarct. Res. Ser. Am. Geophys. Union. 1964. V. 1. P. 33–62.
  17. Berezina N.A., Strelnikova A.P., Maximov A.A. The benthos as the basis of vendace, Coregonus albula, and perch, Perca fluviatilis, diets in an oligotrophic sub-Arctic lake// Polar Biol. 2018. V. 41. P. 1789–1799.
  18. Økland F., Økland J.A.N., Økland K. et al. The unexpected discovery of a brackish water amphipod, Gammarus zaddachi Sexton, 1912, found isolated at 150 m depth in an inland freshwater lake in Norway. Crustaceana. 2011. V. 84. P. 701–706. https://doi.org/:10.2307/23034318.
  19. Винберг Г.Г. Зависимость энергетического обмена от массы тела у водных пойкилотермных животных // Журн. общ. биол. 1976. Т. 37. С. 56–70.
  20. West G.B., Brown J.H., Enquist B.J. A general model for the origin of allometric scaling laws in biology // Science. 1997. V. 276. P. 122–126.
  21. Glazier D.S. A unifying explanation for diverse metabolic scaling in animals and plants // Biological Reviews. 2010. V. 85. P. 111–138.
  22. Сущеня Л.М. Интенсивность дыхания ракообразных. Киев: Наукова думка, 1972. 195 с.
  23. Daan S., Tinbergen J.M. Adaptations and life histories // Behavioural ecology: an evolutionary approach. Eds. Krebs J.R., Davies N.B. Oxford: Blackwell Science, 1997. P. 311–333.
  24. Kozłowski J., Konarzewski M., Gawelczyk A.T. Cell size as a link between noncoding DNA and metabolic rate scaling // Proc. Nation. Acad. Sci. 2003. V. 100. P. 14 080–14 085. https://doi.org/10.1073/pnas.2334605100
  25. Иванова Л.М. Скорость потребления кислорода донными беспозвоночными // Труды ВНИРО. 1973. Т. 130. С. 159–172.
  26. Ивлева И.В. Температура среды и скорость энергетического обмена у водных животных. Киев: Наукова думка, 1981. 232 с.
  27. Arakelova K.S., Chebotareva M.A., Zabelinskii S.A. Adaptive changes in oxygen consumption rate and lipid metabolism in Littorina saxatilis at parasitic invasion // J. Evol.Biochem.Physiol. 2003. V. 39. P. 519–528.
  28. McFeeters B.J., Xenopoulos M.A., Spooner D.E. et al. Intraspecific mass-scaling of field metabolic rates of a freshwater crayfish varies with stream land cover // Ecosphere. 2011. V. 2. №13. https://doi.org/10.1890/ES10-00112.1
  29. Vereshchagina K., Kondrateva E., Mutin A. et al. Low annual temperature likely prevents the Holarctic amphipod Gammarus lacustris from invading Lake Baikal // Sci. Rep. 2021. V. 11. 10532. https://doi.org/10.1038/s41598-021-89581-x
  30. Jakob L., Axenov-Gribanov D.V., Gurkov A.N. et al. Lake Baikal amphipods under climate change: thermal constraints and ecological consequences // Ecosphere 2016. V. 7. e01308.
  31. Halcrow K., Boyd C.M. The oxygen consumption and swimming activity of the amphipod Gammarus oceanicus at different temperatures // Comp. Biochem. Physiol. 1967. V. 23. №1. P. 233–242.
  32. Bozinovic F., Pörtner H.O. Physiological ecology meets climate change // Ecol. Evol. 2015. V. 5. P. 1025–1030.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (554KB)
3.

Download (219KB)
4.

Download (25KB)
5.

Download (71KB)
6.

Download (32KB)
7.

Download (29KB)

Copyright (c) 2023 Н.А. Березина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies