Algorithms for Solving an Algebraic Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For finding global approximate solutions to an algebraic equation in n unknowns, the Hadamard open polygon for the case n = 1 and Hadamard polyhedron for the case n = 2 are used. The solutions thus found are transformed to the coordinate space by a translation (for n = 1) and by a change of coordinates that uses the curve uniformization (for n = 2). Next, algorithms for the local solution of the algebraic equation in the vicinity of its singular (critical) point for obtaining asymptotic expansions of one-dimensional and two-dimensional branches are presented for n = 2 and n = 3. Using the Newton polygon (for n = 2), the Newton polyhedron (for n = 3), and power transformations, this problem is reduced to situations similar to those occurring in the implicit function theorem. In particular, the local analysis of solutions to the equation in three unknowns leads to the uniformization problem of a plane curve and its transformation to the coordinate axis. Then, an asymptotic expansion of a part of the surface under examination can be obtained in the vicinity of this axis. Examples of such calculations are presented.

作者简介

A. Bruno

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: abruno@keldysh.ru
俄罗斯联邦, Moscow, 125047

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019