Measuring similarity between Karel programs using character and word n-grams
- 作者: Sidorov G.1, Ibarra Romero M.1, Markov I.1, Guzman-Cabrera R.2, Chanona-Hernández L.3, Velásquez F.4
-
隶属关系:
- Instituto Politécnico Nacional (IPN)
- Engineering Division
- Instituto Politécnico Nacional
- Polytechnic University of Queretaro
- 期: 卷 43, 编号 1 (2017)
- 页面: 47-50
- 栏目: Article
- URL: https://journals.rcsi.science/0361-7688/article/view/176478
- DOI: https://doi.org/10.1134/S0361768817010066
- ID: 176478
如何引用文章
详细
We present a method for measuring similarity between source codes. We approach this task from the machine learning perspective using character and word n-grams as features and examining different machine learning algorithms. Furthermore, we explore the contribution of the latent semantic analysis in this task. We developed a corpus in order to evaluate the proposed approach. The corpus consists of around 10,000 source codes written in the Karel programming language to solve 100 different tasks. The results show that the highest classification accuracy is achieved when using Support Vector Machines classifier, applying the latent semantic analysis, and selecting as features trigrams of words.
作者简介
G. Sidorov
Instituto Politécnico Nacional (IPN)
编辑信件的主要联系方式.
Email: sidorov@cic.ipn.mx
墨西哥, Mexico City
M. Ibarra Romero
Instituto Politécnico Nacional (IPN)
Email: francisco.castillo@upq.mx
墨西哥, Mexico City
I. Markov
Instituto Politécnico Nacional (IPN)
编辑信件的主要联系方式.
Email: markovilya@yahoo.com
墨西哥, Mexico City
R. Guzman-Cabrera
Engineering Division
编辑信件的主要联系方式.
Email: guzmanc81@gmail.com
墨西哥, Guanajuato
L. Chanona-Hernández
Instituto Politécnico Nacional
编辑信件的主要联系方式.
Email: lchanona@gmail.com
墨西哥, Mexico City
F. Velásquez
Polytechnic University of Queretaro
编辑信件的主要联系方式.
Email: francisco.castillo@upq.mx
墨西哥, Queretaro
补充文件
