Minimal Basis of the Syzygy Module of Leading Terms


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Systems of polynomial equations are one of the most universal mathematical objects. Almost all problems of cryptographic analysis can be reduced to solving systems of polynomial equations. The corresponding direction of research is called algebraic cryptanalysis. In terms of computational complexity, systems of polynomial equations cover the entire range of possible variants, from the algorithmic insolubility of Diophantine equations to well-known efficient methods for solving linear systems. Buchberger’s method [5] brings the system of algebraic equations to a system of a special type defined by the Gröbner original system of equations, which enables the elimination of dependent variables. The Gröbner basis is determined based on an admissible ordering on a set of terms. The set of admissible orderings on the set of terms is infinite and even continual. The most time-consuming step in finding the Gröbner basis by using Buchberger’s algorithm is to prove that all S-polynomials represent a system of generators of K[X]-module S-polynomials. Thus, a natural problem of finding this minimal system of generators arises. The existence of this system follows from Nakayama’s lemma. In this paper, we propose an algorithm for constructing this basis for any ordering.

Об авторах

A. Shokurov

Ivannikov Institute for System Programming, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: shok@ispras.ru
Россия, ul. Solzhenitsyna 25, Moscow, 109004

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).