Over-view of robotic grippers for physical manipulation with agricultural products


如何引用文章

全文:

详细

An overview of agro-grips used to control weeds and harvesting is presented. The relevance of the study is justified by the possibility of improving the quality of fresh fruit and vegetable products, reducing production costs, decreasing the labor shortage by developing and introducing agricultural robots. The classification of the grippers, which are installed on robotic agricultural machines for manipulating fruits, weeds and other objects, is compiled. There are 22 types of grip depending on 6 selected criteria: drive type, the presence of the drive in the grip, the number of fingers, the type of grip movement, the type of mechanism, the type of sensors. In this classification, we mainly consider the characteristics of the gripper, which is installed at the end of the manipulator and is responsible for physical contact with the object. Therefore, the main attention is paid to problems requiring direct capture of objects by the agro robot. The problems of direct spraying of weeds or pruning of branches and leaves, in which manipulators also participate, but the objects of influence are not captured by the robot are mentioned. Examples of existing agricultural research robots equipped with combined grippers according to the proposed classification, referring to different types: vacuum gripper with a video camera for capturing tomatoes, six-finger pneumatic gripper with a video camera, a two-fingered gripper with pressure and collision sensors for picking up an apple, three-fingered capture with a video camera for capturing citrus fruits and others are shown. Further work will be devoted to the study of the problems of physical interaction of agro robots with processed objects, differing in weight, density, geometry, surface roughness and other parameters. The issue of joint interaction of a group of heterogeneous terrestrial and airborne robots in the performance of the target agrarian task in an autonomous mission will also be investigated.

作者简介

- Vu D.K

Saint Petersburg State University of Aerospace Instrumentation

O. Solenaya

Saint Petersburg State University of Aerospace Instrumentation

PhD in Engineering

A. Ronzhin

The Federal State Institution of Science St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences

Email: ronzhin@iias.spb.su
DSc in Engineering

参考

  1. Lee W.S., Ehsani R. Sensing systems for precision agriculture in Florida // Computers and Electronics in Agriculture. 2015. Vol. 112. P. 2-9. doi: 10.1016/j.compag.2014.11.005.
  2. Rodriguez F., Moreno J.C., Sanchez J.A., Berenguel M. Grasping in Agriculture: State-of-the-Art and Main Characteristics // Grasping in Robotics. Springer. P. 385-409. doi: 10.1007/978-1-4471-4664-3_15.
  3. Bechar A. Robotics in horticultural field production // Stewart Postharvest Review. 2010. Vol. 6 (3). P. 1-11. doi: 10.2212/spr.2010.3.11.
  4. Monkman G.J., Hesse S., Steinmann R., Schunk H. Robot grippers. Wiley-VCH, Weinheim. 2007, 463 p.
  5. Bechar A., Vigneault C. Agricultural robots for field operations. Part 2: Operations and systems // Biosystem engineering. 2017. Vol. 153. P. 110-128. doi: 10.1016/j.biosystemseng.2016.11.004.
  6. Midtiby H.S., Astrand B. Upper limit for context based crop classification in robotic weeding applications // Biosystems engineering. 2016. Vol. 146. P. 183-192. doi: 10.1016/j.biosystemseng.2016.01.012.
  7. Perez-Ruız M., Slaughter D.C. Co-robotic intra-row weed control system // Biosystems engineering. 2014. Vol. 126. P. 45-55. doi: 10.1016/j.biosystemseng.2014.07.009.
  8. RHEA Project: A robot fleet for highly effective agriculture and forestry management. http://www.rhea-project.eu. (Дата обращения 01.09.2017).
  9. Sugiura R., Tsuda S. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle // Biosystems engineering. 2016, Vol. 148. P. 1-10. doi: 10.1016/j.biosystemseng.2016.04.010.
  10. Gonzalez-de-Soto M., Emmi L. Autonomous systems for precise spraying- Evaluation of a robotised patch sprayer // Biosystems engineering. 2016. Vol. 146. P. 165-182. doi: 10.1016/j.biosystemseng.2015.12.018.
  11. Oberti R., Marchi M. Selective spraying of grapevines for disease control using a modular agricultural robot // Biosystems engineering. 2016. Vol. 146. P. 203-215. doi: 10.1016/j.biosystemseng.2015.12.004.
  12. Amatya S., Karkee M. Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting // Biosystems engineering. 2016. Vol. 146. P. 3-15. doi: 10.1016/j.biosystemseng.2015.10.003.
  13. Senthilnath J., Dokania A. Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV // Biosystems engineering. 2016. Vol. 146. P. 16-32. doi: 10.1016/j.biosystemseng.2015.12.003.
  14. Brown G.K. New mechanical harvesters for the Florida citrus juice industry // HortTechnology. 2005. Vol. 15. Issue 1. P. 69-72.
  15. Bac C. W., Roorda T. Analysis of a motion planning problem for sweet pepper harvesting in a dense obstacle environment // Biosystems engineering. 2016. Vol. 146. P. 86-97. doi: 10.1016/j.biosystemseng.2015.07.004.
  16. Mehta S.S., MacKunis, W., Burks T.F. Robust visual servo control in the presence of fruit motion for robotic citrus harvesting // Computers and Electronics in Agriculture. 2016. Vol. 123. P. 362-375. doi: 10.1016/j.compag.2016.03.007
  17. Feng Q., Wang X., Wang G., Li Z. Design and test of tomatoes harvesting robot // IEEE International Conference on Information and Automation. Lijiang, 2015, P. 949-952.
  18. Hayashi S., Ganno K., Ishii Y., Tanaka K. Robotic harvesting system for eggplants // Japan Agricultural Research Quarterly. 2002. Vol. 36 (3). P. 163-168.
  19. De-An Z., Jidong L., Wei J., Ying Z., Yu C. Design and control of an apple harvesting robot // Biosystems engineering. 2011. Vol. 110. P. 112-122. doi: 10.1016/j.biosystemseng.2011.07.005
  20. Kompano P. Deleaf-Line robot for deleafing of tomato crops. Режим доступа: https://www.priva.com/discover-priva/news-and-stories/priva-kompano-deleaf-line. (Дата обращения 01.09.2017).
  21. Foglia M.M., Reina G. Agricultural robot for radicchio harvesting // Journal of Field Robotics. 2006. Vol. 23 (6/7). P. 363-377. doi: 10.1002/rob.20131.
  22. Башилов А.М., Королев В.А. Техническое зрение в роботизированных технологиях аграрного производства // Механизация и электрификация сельского хозяйства. 2016. № 6. С. 2.
  23. Сычев В.Г., Афанасьев Р.А., Ермолов И.Л., Кладко С.Г., Ворончихин В.В. диагностика азотного питания растений с использованием беспилотных летательных аппаратов // Плодородие. 2017. № 5. С. 2-4.
  24. Башилов А.М., Королев В.А., Можаев К.Ю. Перспективы использования дронов в реализациях новейших агротехнологий // Вестник ВИЭСХ. 2016. № 4 (25). С. 68-75.
  25. Краусп В.Р., Королев В.А. Электророботизированные агрегаты полеводства // Инновации в сельском хозяйстве. 2016. № 6 (21). С. 122-130.
  26. Кодяков А.С., Павлюк Н.А., Будков В.Ю., Исследование устойчивости конструкции антропоморфного робота Антарес при воздействии внешней нагрузки // Мехатроника, автоматизация, управление. 2017. Т. 18. № 5. С. 321-327. doi: 10.17587/mau.18.321-327.
  27. Павлюк Н.А., Будков В.Ю., Бизин М.М., Ронжин А.Л. Разработка конструкции узла ноги антропоморфного робота Антарес на основе двухмоторного колена // Известия ЮФУ. Технические науки. 2016. № 1 (174). С. 227-239.
  28. Мотиенко А.И., Тарасов А.Г., Дорожко И.В., Басов О.О. Проактивное управление робототехническими системами спасения пострадавших // Труды СПИИРАН. 2016. Вып. 46. C. 174-195. doi: 10.15622/sp.46.12.
  29. Нго К.Т., Соленая О.Я., Ронжин А.Л. Анализ подвижных роботизированных платформ для обслуживания аккумуляторов беспилотных летательных аппаратов // Труды МАИ. 2017. № 95. Режим доступа: http://trudymai.ru/published.php?ID=84444 (дата обращения 01.09.2017).

版权所有 © Vu D.K -., Solenaya O.Y., Ronzhin A.L., 2017

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##