Calculation and identification of the coordinate of oil jet ejection from the gap of a rotating connecting rod bearing


Cite item

Full Text

Abstract

The development of a modern high-speed, energy-efficient and reliable diesel engine requires high-quality lubrication of all friction parts in general and parts of the cylinder-piston group (CPG) in particular. The relevance of this research is due to the insufficient study of the process of oil jet supply of CPG parts, implemented in combined lubrication systems of modern high-speed four-stroke engines and significantly affecting the processes of friction, wear and scuffing of parts of this group. The analysis of previously performed works in this area has shown the feasibility of not only setting up an experiment, but also using computational modeling in order to increase the informativity of the results obtained. The aim of the study was to determine the coordinates of the point of ejection of the oil jet from the gap of the rotating connecting rod bearing. According to the accepted working hypothesis, the point of ejection of the oil jet was the geometric place of the maximum gap in the connecting rod bearing. To calculate the angular coordinate of this point, we used the method of composing and solving equations of plane motion of a solid body. As a result of the research, an analytical expression of the desired coordinate was obtained and its value was calculated during the working cycle for the conditions of the nominal operating mode of the research object - a high-speed universal air-cooled diesel engine 1CH 8.5/8.0 (TMZ-450D). Ensuring the reliability and increasing the accuracy of the results of the study is confirmed by comparison with the calculated data obtained by the method of classical dynamics of piston engines. The array of calculated values of the coordinate of the oil jet ejection point from the gap of the rotating connecting rod bearing of the diesel engine, defined in this paper, will be used for debugging the developed tool for calculating modeling of the oil jet feed process and subsequent optimization of the conditions of lubrication, friction and wear of CPG parts on this basis.

About the authors

S. V Putintsev

Bauman Moscow State Technical University

Email: putintsev50@yandex.ru
Dsc in Engineering Moscow, Russian Federation

S. S Strelnikova

Mechanical Engineering Research Institute of the Russian Academy of Sciences

Email: putintsev50@yandex.ru
Moscow, Russian Federation

S. A Anikin

Military Academy of Space Defense n.a. G.K. Zhukov

Email: putintsev50@yandex.ru
PhD in Engineering Tver, Russian Federation

References

  1. Алексеев В.П., Воронин В.Ф., Грехов Л.В. Двигатели внутреннего сгорания. Устройство и работа поршневых и комбинированных двигателей. М.: Машиностроение, 1990. 288 с.
  2. Manz D., Cowart J., Cheng W. High-speed video observation of engine oil aeration. SAE Techn. Pap. 2004-01-2913. 2004. doi: 10.4271/2004-01-2913.
  3. Gamble R.J., Priest M., Taylor C.M. Detailed analysis of oil transport in the piston assembly of a gasoline engine. Tribology letters. 2003. Vol. 14. No. 2. P. 147-156.
  4. Honel B., Meillier R., Brix F., Noda Y., Andou T., Hosoya M. Model of an engine lubrication circuit including predictive bearing components. SAE Techn. Pap. 2003-01-1965. 2003. doi: 10.4271/2003-01-1965.
  5. Матвеевский Р.М., Комендант В.И. Влияние температуры на трение и задир при возвратно-поступательном движении образцов // Исследование смазочных материалов при трении. М.: Наука, 1981. С. 89-96.
  6. Заренбин В.Г. Теория и тепловые расчеты на заедание в деталях цилиндропоршневой группы двигателей внутреннего сгорания: автореф. дис. докт. техн. наук. 05.04.02. М.: МГТУ им. Н.Э. Баумана. 1995. 32 с.
  7. Богач В.М., Молодцов Н.С. Повышение надежности МОД в условиях повышенных износов и задиров сопряжения втулка цилиндра - поршневое кольцо // Судовые энергетические установки. 2008. № 22. С. 11-18.
  8. Никишин В.Н. Исследование неравномерности температурного поля гильзы цилиндра и поршня автомобильного дизеля // Социально-экономические и технические системы: исследование, проектирование, оптимизация. 2006. №. 7. С. 1-5.
  9. Доценко В.Н., Белогуб А.В., Москаленко И.Н. Методика проектирования профиля поршня ДВС // Вісник двигунобудування. 2015. № 1. С. 74-80.
  10. Путинцев С.В., Агеев А.Г. Экспериментальное исследование условий маслоснабжения цилиндра быстроходного четырехтактного двигателя внутреннего сгорания // Тракторы и сельхозмашины. 2016. № 10. С. 45-49.
  11. Takiguchi M., Nakayama K., Furuhama S., Yoshida H. Variation of piston ring oil film thickness in an internal combustion engine - comparison between thrust and anti-thrust sides. SAE Techn. Pap. 980563. 1998. doi: 10.4271/980563.
  12. Tamminen J., Sandström C.E., Andersson P. Influence of load on the tribological conditions in piston ring and cylinder liner contacts in a medium-speed diesel engine // Tribology international. 2006. Vol. 39. № 12. P. 1643-1652. doi: 10.1016/j.triboint. 2006.04.003.
  13. Агеев А.Г. Снижение механических потерь в быстроходном дизеле воздушного охлаждения совершенствованием конструкции деталей ЦПГ: автореф. дисс. канд. техн. наук. 05.04.02. Москва. МГТУ им. Н.Э. Баумана. 2017. 16 с.
  14. Путинцев С.В., Бикташев А.Ф., Пилацкая С.С. Некоторые результаты экспериментального моделирования условий маслоснабжения ЦПГ малоразмерного четырехтактного дизеля // Тракторы и сельхозмашины. 2018. № 5. С. 69-75.
  15. Попык Г.К. Динамика автомобильных и тракторных двигателей. М.: Машиностроение, 1965. 258 с.

Copyright (c) 2020 Putintsev S.V., Strelnikova S.S., Anikin S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies