Analysis of the operation of a flat sieve that vibrates in a horizontal plane


Cite item

Full Text

Abstract

In accordance with the provisions of the Food security Doctrine of the Russian Federation, it is required to increase the share of domestically produced grain in the world market at least to 95 %. This is facilitated by the presence of 9 % of the world's cultivated areas in the Russian Federation, where black soil is 40 percent. However, post-harvest processing of the entire grain heap brought from the fields is performed by production lines, where the completeness of separation is influenced by the contamination and moisture content of freshly harvested grain. An increase in humidity by 1 % of the baseline reduces the productivity of grain cleaning equipment by 2 %, and an increase in humidity by 1 % reduces productivity by 3 %. Therefore, the country's grain-flow farms need modern technologies for post-harvest grain processing. The main methods of increasing the productivity of machinery can be distinguished. They are: a uniform distribution of seeds over the sieve area, a better particle penetration into the sieve hole, an increase in the speed of grain movement on the surface of the sieves, a complication of the law of vibrations of sieve mills. According to the performed studies the completeness of separation on the sieve surface depends on the indicators of the relative motion of the particle, as well as the angle of inclination of the holes to the direction of descent, the speed and movement of the grain when interacting with the long edge of the sieve hole, performing harmonic oscillations. The following recommendations can be made: the separation process improves at an angle of inclination of the sieve openings β = 45°, the frequency of sieve vibrations n = 110 min-1, the amplitude of sieve vibrations A = 0,09 m, the angle of the sieve transverse inclination αп = 1,5°...2,5°. The cleaning of the grain mixture is carried out qualitatively in accordance with the agrotechnical requirements in this operating mode.

About the authors

A. Yu Golovin

Federal State Budgetary Educational Institution of Higher Education “Omsk State Agrarian University named after P.A. Stolypin”

Email: ayu.golovin@omgau.org
PhD in Engineering Omsk, Russia

U. K Sabiyev

Federal State Budgetary Educational Institution of Higher Education “Omsk State Agrarian University named after P.A. Stolypin”

Email: ayu.golovin@omgau.org
DSc in Engineering Omsk, Russia

P. V Chupin

Federal State Budgetary Educational Institution of Higher Education “Omsk State Agrarian University named after P.A. Stolypin”

Email: ayu.golovin@omgau.org
PhD in Engineering Omsk, Russia

A. S Soyunov

Federal State Budgetary Educational Institution of Higher Education “Omsk State Agrarian University named after P.A. Stolypin”

Email: ayu.golovin@omgau.org
Omsk, Russia

S. P Prokopov

Federal State Budgetary Educational Institution of Higher Education “Omsk State Agrarian University named after P.A. Stolypin”

Email: ayu.golovin@omgau.org
Omsk, Russia

References

  1. Experimental registrations of plain sieve operation, making transverse fluctuations / U.K. Sabiev, E.V. Demchuk, A.Yu. Golovin, I.V. Skysanov. В сборнике Mechanical Science and Technology Update (MSTU-2018) IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1050 (2018) 012074 doi: 10.1088/1742-6596/1050/1/012074.
  2. Aguirre R. Continuous - flowing portable separator for cleaning and upgrading bean seeds and grains / R. Aguirre, A.E. Garay // Agr. Mech / Afr. And Lat. Amer. 1999. V. 30. № 1. P. 59-63.
  3. Boumans, G. Grain Handling and Storage. Amsterdam; Oxford; New-York; Tokyo, 1985. 608 p.
  4. Choszcz, D. The determination of optimum parameters of various kinds of the sieve basket motion of winnowing machine on the cleaning process of mustard seeds / D. Choszcz, S. Konopka, K. Wierzbicki // Rocz. AR Poznaniu. Rol. 1996. № 49. P. 13-22.
  5. Wang Guo-Xin Luoyang gongxueyuan xuebao / Wang Guo-Xin, Shi Qing-Xiang, Ni Chang-An, Liu Shi-Duo, Ji Jiang-Tao // J. Luoyang Inst. Technol. 2000. V. 21. № 1. P. 7-10.
  6. Зильбернагель А.В., Сабиев У.К. Теоретическое исследование влияния траектории движения частицы на вероятность взаимодействия ее с кромками продолговатого отверстия решета // Вестник Алтайского государственного аграрного университета. 2011. № 9 (83). С. 78-81.
  7. Зюзьков Б.И. Подготовка вороха для испытания зерноочистительных машин // Науч. тр. Ом. с.-х. ин-т. Омск, 1972. Т. 94. С. 20-24.
  8. Евтягин В.Ф., Черняков А.В. Граничные режимы бигармонических колебаний плоского решета // Естественные науки и экология: межвуз. сб. науч. тр. Омск, 2000. Вып. 5. С. 17-20.
  9. Зильбернагель А.В. Влияние положения частицы относительно грани продолговатого отверстия решета на ее предельную скорость // Вестник Омского государственного аграрного университета. 2003. № 2. С. 122.
  10. Головин А.Ю. Обоснование конструктивно-режимных параметров плоского подсевного решета, совершающего круговые движения: дис. … канд. техн. наук. Барнаул, 2018. 164 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Golovin A.Y., Sabiyev U.K., Chupin P.V., Soyunov A.S., Prokopov S.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).