Регрессионная математическая модель двухэтапной комбинированной электротехнологии высокотемпературной конвективной сушки и озоновоздушной обработки зерна


Цитировать

Полный текст

Аннотация

Большие объемы производства в России зерновых колосовых культур в 2014-2018 гг. (100-130 млн. т) подразумевают необходимость сушки 10-30 % ежегодно собираемого в стране урожая для обеспечения его количественной и качественной сохранности. Основным способом снижения избыточной влажности зерна в РФ является высокотемпературная конвективная сушка, но она относится к очень энергоемким технологическим операциям и поэтому весьма дорогостоящая. В условиях постоянного роста цен на энергоносители в российской экономике перед сельхозяйственными товаропроизводителями страны стоит первостепенная задача повышения рентабельности зерновой отрасли, в рамках которой необходимо снижать материальные затраты на всех этапах производства, в том числе за счет создания новых высокоинтенсивных энергосберегающих технологий и технических средств для сушки зернового сырья. Авторы разработали отвечающую этим требованиям двухэтапную технологию высокотемпературной конвективной и озоновоздушной сушки зерна. В статье на основе анализа параметрической схемы конвективно-озоновоздушного способа удаления влаги, составленной с учетом условий и возможностей проведения экспериментальных исследований процесса на промышленной сушильной установке «ЭЛЕКТА-1» небольшой производительности, определены параметры оптимизации этого процесса, в качестве которых приняты: уменьшение продолжительности сушки и суммарное снижение энергозатрат на нее, кроме того выделены основные варьируемые в опытах факторы: начальная влажность зерна, величина подачи озона на 1 м3 зерна и затраты времени на удаление влаги. Разработаны регрессионные математические модели второго порядка для процесса конвективно-озоновоздушной сушки зерна ячменя с разной начальной влажностью (30, 25 и 20 %), и проведена оценка их статистической значимости. Анализ экспериментальных данных исследованных вариантов комбинированной сушки при 6%-м влагосъеме за один цикл обработки зернового материала выявил следующие параметры эффективности способов конвективно-озоновоздушного удаления влаги: при сушке зерна с начальной влажностью 30 % снижение продолжительности процесса произошло на 28 %, а уменьшение суммарных энергозатрат составило 33-43 %; при сушке зерна с влажностью 25 % снижение продолжительности процесса - на 19 %, энергозатрат - на 24-35 %; а при сушке зерна влажностью 20 % снижение продолжительности процесса - на 30-35 %, энергозатрат - на 35-40 %.

Об авторах

В. И Пахомов

СКНИИМЭСХ ФГБНУ «АНЦ «Донской»

Email: buhantsov.k@gmail.com
д.т.н.

В. С Газалов

СКНИИМЭСХ ФГБНУ «АНЦ «Донской»

Email: buhantsov.k@gmail.com
д.т.н.

К. Н Буханцов

СКНИИМЭСХ ФГБНУ «АНЦ «Донской»

Email: buhantsov.k@gmail.com

Список литературы

  1. Петриченко В.В. Августовский прогноз урожая зерна 2017 г. - 132 млн т (сверхрекорд) // Хлебопродукты. 2017. № 9. С. 4-5.
  2. Петриченко В.В. Июньский прогноз урожая зерна 2016 г. - рекорд - 110,1 млн т // Хлебопродукты. 2016. № 7. С. 6-8.
  3. Петриченко В.В. Июльский прогноз урожая зерна в России в 2015 г. // Хлебопродукты. 2015. № 9. С. 4-7.
  4. Петриченко В.В. Урожая зерна в России в 2014 г. - более 100 млн т // Хлебопродукты. 2014. № 9. С. 4-6.
  5. Елизаров В.П., Антышев Н.М., Бейлис В.М. и др. Исходные требования на базовые машинные технологические операции в растениеводстве / М.: ФГНУ «Росинформагротех», 2005. С. 140-143.
  6. Способ сушки зерновых материалов: пат. № 2422741 РФ, МПК F26 В3/14 / В.И. Пахомов, В.А. Максименко, К.Н. Буханцов; заявитель и патентообладатель: ВНИПТИМЭСХ. № 2010106531/06, заявл.: 24.02.2010, опубл.: 27.06.2011, Бюл. № 18. 13 с.
  7. Пахомов В.И., Буханцов К.Н., Максименко В.А. Двухэтапный комбинированный способ высокотемпературной сушки зерна. Ч. 1 // Хранение и переработка сельхозсырья. 2011. № 12. С. 56-60.
  8. Пахомов В.И., Буханцов К.Н., Максименко В.А. Двухэтапный комбинированный способ высокотемпературной сушки зерна. Ч. 2 // Хранение и переработка сельхозсырья. 2012. № 1. С. 53-58.
  9. Пахомов В.И., Максименко В.А., Буханцов К.Н. Энергосберегающая технология высокотемпературной конвективной сушки и озоновоздушной обработки зерна. Ч. 1 // Хранение и переработка сельхозсырья. 2013. № 5. С. 19-25.
  10. Пахомов В.И., Максименко В.А., Буханцов К.Н. Энергосберегающая технология высокотемпературной конвективной сушки и озоновоздушной обработки зерна. Ч. 2 // Хранение и переработка сельхозсырья. 2013. № 6. С. 23-27.
  11. Буханцов К.Н. Методика проведения экспериментальных исследований конвективно-озоновоздушной сушки зерновых материалов // Механизация технологических процессов в животноводстве: технологии, машины, оборудование: сб. науч. тр. 4-й Междунар. науч.-техн. конференции «Ресурсосберегающие технологии и инновационные проекты в АПК» (г. Зерноград Ростовской обл., ВНИПТИМЭСХ, 14-15 апреля 2009 г.). Зерноград, 2009. С. 265-276.
  12. Проведение экспериментальных исследований фрагментов энергоэкономных электротехнологий и процессов обработки растительных сельскохозяйственных материалов с использованием электрофизических методов и разработка оптимизационной математической модели: отчет о НИР (промежуточ.): 09.02.02.01 / ВНИПТИМЭСХ; рук. В.Д. Каун. Зерноград, 2008. 46 с. № ГР 15070.7721019635.06.8.002.0.
  13. Максименко В.А., Буханцов К.Н. Многофункциональная установка малой производительности для реализации электротехнологий послеуборочной и предпосевной обработки зерна и семян // О проблемах обеспечения в современных условиях количественной и качественной сохранности материальных ценностей, поставляемых и закладываемых в государственный резерв: сборник докладов Междунар. науч.-практ. конференции (г. Москва, ФГБУ НИИ проблем хранения Росрезерва, 5-6 сентября 2011 г.). М.: ООО «Галлея-Принт», 2011. Ч. 2. С. 158-168.
  14. Пахомов В.И., Буханцов К.Н. Реализация технологий комбинированной сушки, обеззараживания и стимулирования посевных свойств зерна и семян на базе установки «ЭЛЕКТА-1» // Научно-технический прогресс в сельскохозяйственном производстве: материалы Междунар. науч.-практ. конференции (г. Минск, РУП НПЦ НАН Беларуси по механизации сельского хозяйства, 19-20 октября 2011 г.). Минск, 2011. Т. 1. С. 196-207.
  15. Пахомов В.И., Максименко В.А., Буханцов К.Н. Рассмотрение возможности использования новой двухэтапной технологии высокотемпературной конвективной сушки и озоновоздушной обработки зерна на базе применяемых в производстве сушильных установок // Современные энергосберегающие тепловые технологии (сушка и термовлажностная обработка материалов) - СЭТТ-2011: труды 4-й Междунар. науч.-практ. конференции (г. Москва, ФГБОУ ВПО МГАУ им. В.П. Горячкина, 20-23 сентября 2011 г.). М., 2011. Т. 2. С. 54-66.
  16. Ванурин В.Н., Максименко В.А., Буханцов К.Н. Выбор привода отгрузочного шнека установки СВЧ-обеззараживания «СИГМА-1» // Вестник АПК Ставрополья. 2015. № 4. С. 18-23.
  17. Проведение экспериментальных исследований по проверке эффективности перспективных энергосберегающих электротехнологий обработки растительных сельскохозяйственных материалов (биообъектов), уточнение параметрических зависимостей процесса сушки и разработка математической модели процесса сушки сельскохозяйственных культур: отчет о НИР (промежуточ.): 09.02.02.01 / ВНИПТИМЭСХ; рук. А.И. Пахомов. Зерноград, 2009. 59 с. № ГР 15070.7721019635.06.8.002.0. Инв. № 73-09.1.
  18. Газалов В.С., Пономарева Н.Е., Беленов В.Н. Использование статистических методов при решении прикладных задач в сельскохозяйственном производстве: монография. Зерноград: ПМГ СКНИИМЭСХ, 2011. 74 с.
  19. Грачева Н.Н., Руденко Н.Б., Кононенко А.Ф., Литвинов В.Н. Применение ЭВМ в агрономии.Зерноград: АЧИИ ФГБОУ ВО ДонГАУ, 2017. Ч. 2. Обработка и анализ экспериментальных данных. 152 с.
  20. Гусаров В.М., Проява С.М. Общая теория статистики. М.: ЮНИТИ, 2008. 206 с.
  21. Гусаров В.М., Кузнецова Е.И. Статистика. М.: ЮНИТИ-ДАНА, 2007. 479 с.
  22. Горелова Е.И. Основы хранения зерна. М.: Агропромиздат, 1986. 136 с.
  23. Жидко В.И., Резчиков В.А, Уколов В.С. Зерносушение и зерносушилки. М.: Колос, 1982. 239 с.
  24. Птицын С.Д. Зерносушилки. Технологические основы, тепловой расчет и конструкции. М.: Машиностроение, 1966. 212 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Пахомов В.И., Газалов В.С., Буханцов К.Н., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).