Prospects for the development of undercarriage systems of modern mobile energy devices for agricultural purposes


Cite item

Full Text

Abstract

The final stage of the cultivation of crops is harvesting. The quality of the operation depends on the annual result of the effectiveness of all previous work. It is important not only to harvest well, but to preserve the fertility of the soil and avoid soil compaction. The problem of compression is becoming more acute due to the massive use of heavy wheeled tractors and combines. The degree of soil compaction depends on the type of propulsion unit, the weight of the tractor and the number of passes of the units across the field. The negative impact of undercarriage systems on the soil should be considered when creating new machines based on new layout schemes, to reduce the structural weight, taking into account the dynamics and distribution of the center of mass of the variation in hook load. To reduce pressure and evenly distribute it is possible through the creation of more advanced propulsion and suspension systems. The purpose of this article is to analyze the most promising designs of the mobile agricultural machinery undercarriage systems, which can reduce the specific pressure on the ground, improve the throughput of agricultural machinery and provide a more comfortable planting and harvesting. At the moment, the following main directions of development of agricultural machinery undercarriage systems can be distinguished: pneumatic tracks, twin wheels, half-track, installation of rubber-reinforced tracks (RRT) and torsion as an elastic suspension element. The tests carried out confirmed that the installation of a changeable tracked propulsion unit can reduce the degree of soil compaction by 17-46 %, and the use of twin wheels showed an increase in pulling force by 20 % and a decrease in gauge depth by 40 %. The use of pneumatic trackers allows to increase the permeability of the transport vehicle on soils with a weak bearing capacity and at the same time minimize the damage that it can cause to the supporting base. Recently it is popular to operate the agricultural machinery, which uses rubber-reinforced caterpillar. Its caterpillar operational cycle if higher of 4-5 times comparing to those from metal. In addition, it allows to reduce vibration load and do the work at wet soil conditions. RRT is put both in the all-track version, and in the form of a wheel-caterpillar. This propulsion unit has a triangular shape of rubber tracks is mounted instead of wheels. Currently, individual torsion hangers of track rollers are widely used on tracked tractors. The advantages of the new torsion-balance suspension made it possible to increase the reliability and durability of tracked tractors undercarriage systems.

About the authors

Z. A Godzhaev

Federal State Budgetary Institution «Federal Scientific Agro-Engineering Center VIM»

Email: fic51@mail.ru
DSc in Engineering

A. M Pogozhina

Federal State Budgetary Institution «Federal Scientific Agro-Engineering Center VIM»

Email: fic51@mail.ru

References

  1. Окунев Г.А., Кузнецов Н.А., Бражников А.А. Воздействие машинных агрегатов на почву и тенденции формирования машинно-тракторного парка // Вестник ЧГАА. 2014. Т. 69. С. 51-54.
  2. Канделя М.В., Земляк В.Л. Пути решения переуплотнения почв за счет оснащения тракторов и всей уборочно-транспортной техники резиноармированными гусеницами // Современные научные исследования и инновации. 2018. С. 171-175.
  3. Окунев Г.А., Кузнецов Н.А. Последствия влияния на почву тракторов среднего класса при оценке эффективности их использования // Апк России. 2016. Т. 75. С. 89-95.
  4. Бойков В.П., Гуськов В.В., Жданович Ч.И. Многоцелевые гусеничные и колесные машины. Проектирование. Учебное пособие. URL: http://www.center-exit.ru/redkie-fayli/5231.php (дата обращения: 17.09.2018).
  5. Прядкин В.И., Годжаев З.А. Моделирование взаимодействия высокоэластичной шины с неровностью дороги // Тракторы и сельхозмашины. 2014. № 1. С. 16-18.
  6. Русанов В.А. Механико-технологические решения проблемы воздействия движителей полевой техники на почву. 1996. 689 с.
  7. Русанов В.А. Проблема переуплотнения почв движителями и эффективные пути ее решения. ВИМ, 1998. 368 с.
  8. Гоменюк В.И. Повышение тягово-сцепных свойств колесного трактора класса 1,4 за счет постановки полугусеничного хода в условиях Амурской области. Благовещенск: Дальневосточный государственный аграрный университет, 2011.
  9. Камбулов С.И. [и др.] Ходовые системы машинно-тракторных агрегатов и их влияние на качество выполяемых операций // Тракторы и сельхозмашины. 2017. № 11. С. 15-21.
  10. Ксеневич И.П., Шарипов В.М. Тракторы конструкция. URL: https://www.twirpx.com/file/ 1391836/ (дата обращения: 17.09.2018).
  11. Веселов Н.Б. Вездеходные транспортно-технологические машины. Конструкции. Конструирование и расчет. 2010. С. 315-316.
  12. Гусеничные зерно- и кормоуборочные комбайны. Основы теории и конструктивно-техно­логические устройства. URL: http://os.x-pdf.ru/20selskohozyaistvo/298849-5-am-emelyanov-bumbar-kandelya-ryabchenko-shpilev-gusenichnie-zerno.php (дата обращения: 18.09.2018).
  13. Годжаев З.А., Русанов А.В., Прядкин В.И. Научно-техническое решение проблемы переуплотнения почвы сельхозмашинами // Сельскохозяйственные машины и технологии. № 6. С. 30-34.
  14. Измайлов А.Ю. [и др.]. Сменный гусеничный движитель колесного транспортного средства. 2017.
  15. Протокол № 02-10-07(4010271) Приемочных испытаний шасси полугусеничного на резиноармированных гусеница ШПР 00.00.000. -1. Зеленый Бор. Амурская государственная станция, 2007. 2007.
  16. Сысове А.М. [и др.]. Рекомендации по использованию грузовых автомобилей сельскохозяйственного назначения грузоподъемностью до 2 т и от 2 до 5 т в составе технологических адаптеров и внутри технологических процессов / Металлургиздат, 2011.
  17. Раймпель И. Автомобильные шасси. Элементы подвески. Машиностроение. 1986. 286 с.
  18. Торсионно-балансирная подвеска гусеничных тракторов Т-150 и ХТЗ-181. Наши инновации. Гарантия и сервис. ХТЗ Белгород. URL: http://xtz-belgorod.ru/our_innovations/show_34/(дата обращения: 19.09.2018).
  19. Трояновская И.П. Оценка плавности хода гусеничных тракторов Т-150 с балансирной и торсионной подвесками // Известия Оренбургского Государственного Аграрного Университета. 2013. № 4 (42). С. 88-90.

Copyright (c) 2018 Godzhaev Z.A., Pogozhina A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies