Grain loss sensor for pneumatic separation systems of grain-cleaning machines


Cite item

Full Text

Abstract

One of the reasons of poor effectiveness of machines for postharvest grain handling is the difficulty of optimal modes setting under constantly changing input actions. Using of hardware check and technological process control instead of manual adjustment will reduce the costs and improve the quality of postharvest grain handling. A grain loss sensor for device of parameter checkout of technological process of pneumatic systems of grain-cleaning machines is developed. Its operation is based on the analysis of parameters of sound pressure signal, that arises when grains blowing together with impurities are hitting against a wall of settling chamber. The sensor design is developed on the basis of Soho T-1 low-cost piezometric transducer. The sensor is located on the outer side of a wall against which grains are hitting, and lies outside the air stream carrying the impurities and dust. Therefore, the reliability of the sensor increases, and the air stream structure in pneumatic separation system remains steady. The parameters of sound signal arising when grains are hitting against a wall of settling chamber are determined. The researches were conducted with the grains of wheat, rye, oats and barley; the grain moisture content was varied within the range from 12.6 to 35%. The dependencies between the parameters of sound signal arising when grains are hitting against a wall of settling chamber and the grain loss level have been obtained. The operational capability of the sensor was tested on an experimental model of pneumatic separator installed on postharvest grain handling line. The sensor can be adapted for operation in other pneumatic systems of grain-cleaning machines.

About the authors

N. V Zholobov

Vyatka State Agricultural Academy

Email: zholobovnv@gmail.com
Kirov, Russia Киров, Россия

K. V Maishev

Vyatka State Agricultural Academy

Kirov, Russia Киров, Россия

References

  1. Стрикунов Н.И. Эффективное использование технологических возможностей зерноочистительных машин // Вестник АГАУ. 2006, №2. С. 66-67.
  2. Ямпилов С.С. Технологическое и техническое обеспечение ресурсо-энергосберегающих процессов очистки и сортирования зерна и семян. Улан-Удэ: Изд-во ВСГТУ, 2003. 262 с.
  3. Сычугов Н.П., Сычугов Ю.В., Исупов В.И. Машины, агрегаты и комплексы послеуборочной обработки зерна и семян трав: Монография. Киров: ООО «Веси», 2015. 404 с.
  4. Risius N.W. Analysis of a combine grain yield monitoring system. Graduate Theses and Dissertations. Paper 13799. Ames, Iowa: Iowa State University, 2014. 92 p.
  5. Hu J., Gong Ch., Zhang Zh. Dynamic compensation for impact-based grain flow sensor // Computer and computing technologies in agriculture V. Volume 370 of the series IFIP Advances in information and communication technology. Springer Berlin Heidelberg, 2012, pp. 210-216. doi: 10.1007/978-3-642-27275-2_23.
  6. Andrade-Sanchez P., Heun J.T. Yield monitoring technology for irrigated cotton and grains in Arizona: Hardware and software selection. Bulletin AZ1596. The University of Arizona - Cooperative Extension. Tucson, Arizona, 2013.
  7. Schrock M.D., Oard D.L., Taylor R.K. et al. A diaphragm impact sensor for measuring combine grain flow // Applied engineering in agriculture. 1999, vol. 15(6), pp. 639-642. doi: 10.13031/2013.5830.
  8. Microwave type flow sensor KFD series // Kansai Automation Co., Ltd. [Электронный ресурс]. URL: http://www.kansai-automation.co.jp/eng/products/pdf/MF_MF2-006-0707E.pdf (дата обращения 10.02.2016).
  9. Moore M.R. An investigation into the accuracy of yield maps and their subsequent use in crop management. PhD thesis. Silsoe College, Cranfield University, 1998.
  10. Liang Zh., Li Ya., Zhao Zh. et al. Structure optimization of a grain impact piezoelectric sensor and its application for monitoring separation losses on tangential-axial combine harvesters // Sensors. 2015, no. 15 (1), pp. 1496-1517. doi: 10.3390/s150101496.
  11. Veal M.W. Enhanced grain crop yield monitor accuracy through sensor fusion and post-processing algorithms. University of Kentucky doctoral dissertations. Paper 249. 2006, 211 p.
  12. Жолобов Н.В., Маишев К.В., Блинов Б.Ю. и др. Пневмосепаратор для очистки зернового материала: Патент РФ на полезную модель №134458, 2013. 5 с.
  13. Жолобов Н.В., Маишев К.В., Жолобов А.Н. Выявление взаимосвязи между потерями зерна в отходы и звуковым сигналом при работе пневмосепаратора // Улучшение эксплуатационных показателей сельскохозяйственной энергетики: Мат-лы IV междунар. науч.-практ. конф. Киров: Вятская ГСХА, 2010. Вып. 11. С. 80-84.
  14. Жолобов Н.В., Блинов Б.Ю., Маишев К.В. Ресурсосберегающий пневмосепаратор // Сельский механизатор. 2013, №6. С. 12-15.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Zholobov N.V., Maishev K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).