The digital twin of the grain cleaning and transportation system of a breeding combine harvester

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The paper discusses the process of modeling the motion of grain and foreign impurities carried by the air flow in the grain transportation and cleaning system of a breeding combine harvester, which is necessary to improve the quality of grain cleaning and to optimize the development and adjustment of such cleaning systems.

AIM: Building a digital twin of the transportation and cleaning system with the ability to simulate the motion of particles in the air flow.

METHODS: A digital model of the grain transportation and cleaning system was used as the object of study. Modeling of the process and study of particle movement in an air flow using the discrete element method was carried out at the Don Engineering Center as part of the SRW of the Federal Scientific Agroengineering Center VIM. The particle parameters were selected based on measurements of real impurities in the grain heap of the Anfisa wheat variety.

RESULTS: The composition of the grain heap was clarified, the geometric dimensions and masses of typical particles — grains, chaff, awns, etc. — were measured, their digital models were created. A digital model of the grain transportation and cleaning system of a breeding combine harvester was created, with the help of which a study of the motion of particles in the air flow was carried out, in particular - their paths, motion velocities. The grain heap motion route was modeled from the time it enters the grain intake from the sieves by the time it passes the cyclone filter of the cleaning system. Some air flow parameters were measured on a physical sample of the pneumatic grain transportation and cleaning system installed on a breeding combine harvester.

CONCLUSION: To improve the quality of grain cleaning in a selective combine harvester and optimize the development and configuration of such cleaning systems, the possibility of conducting research in a digital environment for a design requiring optimization of many parameters is considered, using the example of a digital twin of a grain transportation and cleaning system with the ability to simulate particle motion in an air stream.

About the authors

Mikhail E. Chaplygin

Federal Scientific Agroengineering Center VIM

Email: misha_2728@yandex.ru
ORCID iD: 0000-0003-0031-6868
SPIN-code: 2268-6927

Cand. Sci. (Engineering), Leading researcher of the Technologies and Equipment for Cereals, Legumes and Oilseeds Department

Russian Federation, Moscow

Andrey V. Butovchenko

Don State Technical University

Email: ButovchenkoAV@yandex.ru
ORCID iD: 0000-0002-9335-9586
SPIN-code: 7205-4573

Dr. Sci. (Engineering), assistant professor, Professor of Institute of Advanced Mechanical Engineering “Rosselmash”

Russian Federation, Rostov-on-Don

Kirill A. Stepanov

Federal Scientific Agroengineering Center VIM

Author for correspondence.
Email: 89999878895@mail.ru
ORCID iD: 0009-0004-1511-4307
SPIN-code: 6831-0519

Cand. Sci. (Engineering), Senior researcher of the Technologies and Equipment for Cereals, Legumes and Oilseeds Department

Russian Federation, Moscow

Sergey V. Belousov

Kuban State Agrarian University named after I.T. Trubilin; Agricultural Research Center “Donskoy”

Email: sergey_belousov_87@mail.ru
ORCID iD: 0000-0002-8874-9862
SPIN-code: 6847-7933

Cand. Sci. (Engineering), Assistant professor of the Processes and Machines in Agribusiness Department

Russian Federation, Krasnodar; Zernograd

Alexander S. Ovcharenko

Federal Scientific Agroengineering Center VIM

Email: peterbilt@list.ru
ORCID iD: 0000-0002-1407-6757
SPIN-code: 8452-3589

Junior researcher of the Technologies and Equipment for Cereals, Legumes and Oilseeds Department

Russian Federation, Moscow

References

  1. Zhalnin EV, Chaplygin ME. Improving the design of combine harvesters by harmonizing their basic technical parameters. Engineering technologies and systems. 2023;33:403–416. doi: 10.15507/2658-4123.033.202303.403-416 (In Russ.)
  2. Davydova SA, Chaplygin ME. Technical equipment of corn breeding and seed production. Agricultural machinery and technologies. 2020;14(3):66–74. doi: 10.22314/2073-7599-2020-14-3-66-74 (In Russ.) EDN: TYGTXU
  3. Musin AM. Results of experiments ti study the effect of pneumatic grain transportation and grain quality. (Canada). Engineering and technical support of the agro-industrial complex. Abstract journal. 2001.1:187 (In Russ.) EDN: ECFLLJ.
  4. Chernyakov AV, Begunov MA, Koval VS, Korostelev DN. Investigation of the operation of a pneumatic grain cleaning machine. Bulletin of Omsk State Agrarian University. 2022;2(46):167–174 doi: 10.48136/2222-0364_2022_2_167 (In Russ.) EDN: ZERWCC
  5. Klinzing GE. A review of pneumatic conveying status, advances and projections. Powder Technology. 2018;333:78–90. doi: 10.1016/j.powtec.2018.04.012
  6. Coetzee CJ. Review: Calibration of the discrete element method. Powder Technology. 2017;310:104–142. doi: 10.1016/j.powtec.2017.01.015 EDN: YWFXOV
  7. Wang M, Zhu W, Qiaoqun S, Zhang X. A DEM simulation of dry and wet particle flow behaviors in riser. Powder Technology. 2014;267:221–233. doi: 10.1016/j.powtec.2014.07.026
  8. Wang C, Li W, Li B, et al. Study on the Influence of Different Factors on Pneumatic Conveying in Horizontal Pipe. Applied Sciences (Switzerland). 2023;13(9):5483. doi: 10.3390/app13095483 EDN: NATFCV
  9. Liu W, Zeng S, Chen X. Vortex Cleaning Device for Rice Harvester: Design and Bench Test. Agriculture (Switzerland). 2024;14.6:866. doi: 10.3390/agriculture14060866 EDN: RLDSFI
  10. Zhao H, Huang Y, Liu Z, et al. Applications of Discrete Element Method in the Research of Agricultural Machinery: A Review. Agriculture (Switzerland). 2021;11(5):425. doi: 10.3390/agriculture11050425 EDN: MNKSUX
  11. Yuan J, Jin C, Ye F, et al. Dust Suppression Analysis of a New Spiral Hopper Using CFD-DEM Simulations and Experiments. Processes. 2020;8(7):783. doi: 10.3390/pr8070783 EDN: GCSOXW
  12. Kieckhefen P, Pietsch S, Dosta M, Heinrich S. Possibilities and Limits of Computational Fluid Dynamics–Discrete Element Method Simulations in Process Engineering: A Review of Recent Advancements and Future Trends. Annual Review of Chemical and Biomolecular Engineering. 2020;11(1):397–422. doi: 10.1146/annurev-chembioeng-110519-075414 EDN: WVHSJC
  13. Ding B, Liang Z, Qi Y, et al. Improving Cleaning Performance of Rice Combine Harvesters by DEM–CFD Coupling Technology. Agriculture (Switzerland). 2022;12(9):1457. doi: 10.3390/agriculture12091457 EDN: MTUOHM
  14. Guzman L, Chen Y, Landry H. Coupled CFD-DEM Simulation of Seed Flow in an Air Seeder Distributor Tube. Processes. 2020;8(12):1597. doi: 10.3390/pr8121597 EDN: TWPHIV
  15. Xu D, Li Y, Xu X, et al. Numerical Study of Wheat Particle Flow Characteristics in a Horizontal Curved Pipe. Processes. 2024;12(5):900. doi: 10.3390/pr12050900 EDN: HDOTSI
  16. Makkawi Y, Yu X, Ocone R, Generalis SC. Continuum Modeling of Slightly Wet Fluidization with Electrical Capacitance Tomograph Validation. Energies. 2024;17(11):2656. doi: 10.3390/en17112656 EDN: EEFGSC
  17. Liu W, Zeng S, Wu Z. Parameter Optimization of Spiral Step Cleaning Device for Ratooning Rice Based on Computational Fluid Dynamics-Discrete Element Method Coupling. Agriculture. 2024;14:2141. doi: 10.3390/agriculture14122141 EDN: BNTJFO
  18. Tsuji Y, Kawaguchi T, Kawaguchi T, et al. Discrete particle simulation of two-dimensional fluidized bed. Powder Technology. 1993;77(1):79–87. doi: 10.1016/0032-5910(93)85010-7
  19. Guzman L, Chen Y, Landry H. Coupled CFD-DEM Simulation of Seed Flow in Horizontal-Vertical Tube Transition. Processes. 2023;11(3):909. doi: 10.3390/pr11030909 EDN: EQRDOQ
  20. Liang Y Q, Tang Z, Zhang H, et al. Cross flow fan on multi-dimensional airflow field of air screen cleaning system for rice grain. Int J Agric & Biol Eng. 2022;15(4):223–235. doi: 10.25165/j.ijabe.20221504.6949 EDN: EORYDC
  21. Raheman H, Jindal VK. Drag coefficients of agricultural grains in vertical pneumatic conveying. Applied Engineering in Agriculture. 2003;19(2). doi: 10.13031/2013.13095
  22. Cui H, Grace JR. Pneumatic conveying of biomass particles: a review. China Particuology. 2006;4(3-4):183–188. doi: 10.1016/s1672-2515(07)60259-0
  23. Walton OR, Braun RL, Braun R. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of Rheology. 1986;30(5):949–980. doi: 10.1122/1.549893
  24. Ryadnov AI. Substantiation of the design and technological scheme of the pneumatic grain conveyor of a sorghum harvester. Izvestia of the Lower Volga Agro-University Complex: Science and higher professional education. 2014;3(35):200–205 (In Russ.) EDN: SPWSW
  25. Bogdanov IN. Pneumatic transport in agricultur. Moscow: Rosagropromizdat; 1991:128 (In Russ.)
  26. Koval V, Chernyakov A, Shevchenko A, et al. Determination of Separator Constructive Parameters. IOP Conference Series: Materials Science and Engineering. 2019;582(1):012–040. doi: 10.1088/1757-899X/582/1/012040 EDN: XKKKXE
  27. Panova TV, Panov MV. Justification of the maximum permissible flow velocity in a pneumatic transport. Rural mechanizer. 2021;8:24–26. EDN CDTOVX.
  28. Sharaby NN, Doroshenko AA, Butovchenko AV. Simulation of Sesame Seeds Outflow in Oscillating Seed Metering Device Using DEM. Engineering Technologies and Systems. 2020;30(2):219–231. doi: 10.15507/2658-4123.030.202002.219-231 EDN: NBOEZY
  29. Sharaby NN, Doroshenko AA, Butovchenko AV. Modelling and verification of sesame seed particles using the discrete element method. Journal of Agricultural Engineering. 2022;53(2). doi: 10.4081/jae.2022.1286 EDN: NICLTF
  30. Chen P, Han Y, Jia F, et al. DEM simulations and experiments investigating the influence of feeding plate angle in a rubber-roll paddy grain huller. Biosystems Engineering. 2021;201:23–41. doi: 10.1016/j.biosystemseng.2020.11.003 EDN: KVOOQM
  31. Fan J, Wang H, Sun K, et al. Experimental verification and simulation analysis of a multi-sphere modeling approach for wheat seed particles based on the discrete element method. Biosystems Engineering. 2024;245:135–151. doi: 10.1016/j.biosystemseng.2024.07.009 EDN: PYVEVV
  32. Petre Miu. Combine Harvesters: Theory, Modeling, and Design. New York: CRC Press Taylor and Francis; 2015. doi: 10.1201/b18852
  33. Horabik J, Molenda M. Parameters and Contact Models for DEM Simulations of Agricultural Granular Materials: A Review. Biosystems Engineering. 2016;147:206–225. doi: 10.1016/j.biosystemseng.2016.02.017 EDN: WSPQBR
  34. Ezdina AA, Boyko DA, Ponomareva OA, Novikova VA. Laboratory installation of a pneumatic transmission for determining the hydraulic characteristics of a regulating device. International science project. 2020;1(36);9–11. (In Russ). EDN: OOVFGX
  35. Tang Z, Yu L, Wang F, et al. Effect of Particle Size and Shape on Separation in a Hydrocyclone. Water (Switzerland). 2018;11(1):16. doi: 10.3390/w11010016 EDN: QGOQYV
  36. Zhou H, Wang G, Jia C, Li C. A Novel, Coupled CFD-DEM Model for the Flow Characteristics of Particles Inside a Pipe. Water (Switzerland). 2019;11(11): 2381. doi: 10.3390/w11112381
  37. Cundall PA, Strack ODL. A Discrete Numerical Model for Granular Assemblies. Geotechnique. 1979;29(1):47–65. doi: 10.1680/geot.1979.29.1.47

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Layout diagram of the grain cleaning and transportation system.

Download (139KB)
3. Fig. 2. Main units of the transportation and cleaning system: a, cyclone; b, centrifugal fan; c, grain intake collector.

Download (135KB)
4. Fig. 3. Model of the internal space of the grain transportation and cleaning system.

Download (70KB)
5. Fig. 4. Weighing of grain and weed impurities using analytical scales: a, grain, b, awns.

Download (210KB)
6. Fig. 5. Geometry of the pneumatic transportation system.

Download (84KB)
7. Fig. 6. Visualization of velocities and directions of air flow: a, general view; b, in the cyclone; c, in the grain intake collector.

Download (500KB)
8. Fig. 7. Area of grain pile particle generation.

Download (198KB)
9. Fig. 8. Visualization of particle paths in an air flow: a, in a cyclone; b, general view.

Download (295KB)
10. Fig. 9. Visualization of grain pile particle motion in the transportation and cleaning system: a, in the grain intake collector; b, in the pipeline bend; c, in the cyclone.

Download (341KB)
11. Fig. 10. Breeding combine harvester with electric drive of working bodies: a, centrifugal fan; b, grain intake collector.

Download (236KB)
12. Fig. 11. Layout of the system of the grain transportation and cleaning system of a combine harvester, measured sections of sampling: 1, fan (inlet); 2, outlet after grain intake collector; 3, entrance to cyclone; 4, upper outlet from cyclone; 5, lower outlet from cyclone.

Download (33KB)
13. Fig. 12. Coordinates of velocity measurement in cylindrical ducts at D ≤300 mm.

Download (31KB)
14. Fig. 13. Measuring fan shaft velocity and airflow rate.

Download (180KB)
15. 1

Download (12KB)
16. 2

Download (18KB)
17. 3

Download (5KB)
18. 4

Download (10KB)
19. 5

Download (12KB)
20. 6

Download (18KB)
21. 7

Download (7KB)
22. 8

Download (18KB)

Copyright (c) 2026 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).