Method for synthesizing optimal parameters of a hybrid powertrain with an electrochemical generator and a rechargeable energy storage system
- Authors: Anisimov V.R.1,2, Klimov A.V.1,2
-
Affiliations:
- Moscow Polytechnic University
- KAMAZ Innovation Center
- Issue: Vol 92, No 5 (2025)
- Pages: 438-451
- Section: Environmentally friendly technologies and equipment
- URL: https://journals.rcsi.science/0321-4443/article/view/381377
- DOI: https://doi.org/10.17816/0321-4443-691257
- EDN: https://elibrary.ru/LHMLHW
- ID: 381377
Cite item
Full Text
Abstract
BACKGROUND: Due to the rapid growth of the electrified transport sector, one of the key issues in designing electrified vehicles is determining the optimal parameters of hybrid powertrains. This paper contains the study of an extra-large class urban passenger vehicle equipped with a hybrid powertrain (HPT) consisting of a rechargeable electrical energy storage system and an electrochemical generator. In order to define optimal parameters of a HPT, the method for synthesis of optimal parameters that accounts for the main design requirements and operational features of the studied vehicle is proposed.
AIM: Determination of the optimal parameters of a hybrid powertrain for a vehicle, taking into account technical and operational parameters and the actual operating modes of an extra-large class urban passenger vehicle.
METHODS: Optimization of the hybrid powertrain parameters is performed using a global search optimization algorithm included in the GlobalToolbox package of the MATLAB software. Simulation modeling methods in the Simulink software are used to calculate the optimization criterion.
RESULTS: The paper presents a formulation of the optimization problem for the hybrid powertrain parameters, a description of the simulation mathematical model in the Simulink software, verification of the mathematical model using the experimental data, and the results of synthesis of optimal parameters for various cell chemistries of the rechargeable electrical energy storage system.
CONCLUSION: As the study result, optimal parameters of the HPT of the extra-large class urban passenger vehicle were defined considering main technical and operational parameters. The practical value of this study lies in the possibility of using the proposed method for determining optimal parameters of hybrid powertrains in the design of commercial vehicles, in particular extra-large class passenger vehicles with a hybrid powertrain based on an electrochemical generator and a rechargeable electrical energy storage system.
Full Text
##article.viewOnOriginalSite##About the authors
Viktor R. Anisimov
Moscow Polytechnic University; KAMAZ Innovation Center
Author for correspondence.
Email: rabota.viktor.1999@mail.ru
ORCID iD: 0000-0003-1268-6604
SPIN-code: 5036-8965
Postgraduate of the Advanced Engineering School of Electric Transport
Russian Federation, Moscow; MoscowAlexander V. Klimov
Moscow Polytechnic University; KAMAZ Innovation Center
Email: klimmanen@mail.ru
ORCID iD: 0000-0002-5351-3622
SPIN-code: 7637-3104
Cand. Sci. (Engineering), Assistant professor of the Advanced Engineering School of Electric Transport, Head of the Electric Vehicles Department
Russian Federation, Moscow; MoscowReferences
- Anisimov VR, Klimov AV. Analysis of the application of a fuel-cell generator in combined power plants. Gruzovik. 2024;(11):11–17. doi: 10.36652/1684-1298-2024-11-11-17 (In Russ.) EDN: XDNFMP
- Changizian S, Ahmadi P, Raeesi M, et al. Performance optimization of hybrid hydrogen fuel cell-electric vehicles in real driving cycles. International Journal of Hydrogen Energy. 2020;45(60):35180–35197. doi: 10.1016/j.ijhydene.2020.01.015 EDN: GGVQUL
- Kumar D, Nema RK, Gupt, S. A comparative review on power conversion topologies and energy storage system for electric vehicles. International Journal of Energy Research. 2020;44(10):7863–7885. doi: 10.1002/er.5353 EDN: BGKKHO
- Offer GJ, Howarth R, Contestabile M, et al. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy. 2010;38(1):24–29. doi: 10.1016/j.enpol.2009.08.040
- Bonci M. Fuel Cell Vehicle Simulation: An Approach Based on Toyota Mirai. [Master’s Thesis] Torino, 2021. Accessed: 24.09.2025. Available from: https://webthesis.biblio.polito.it/secure/17641/1/tesi.pdf
- Njoya MS, Tremblay O, Dessaint LA. A generic fuel cell model for the simulation of fuel cell vehicles. Proc. IEEE VPPC. 2009:1–6. doi: 10.1109/VPPC.2009.5289692
- Xu L, Ouyang M, Li J, et al. Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost. Applied Energy. 2013;103:477–487. doi: 10.1016/j.apenergy.2012.10.010
- Li W, Feng G, Jia S. An energy management strategy and parameter optimization of fuel cell electric vehicles. World Electr Veh J. 2022;13(1):21. doi: 10.3390/wevj13010021 EDN: IAXXFK
- Liu C, Liu L. Optimal power source sizing of fuel cell hybrid vehicles based on Pontryagin’s minimum principle. Int J Hydrogen Energy. 2015;40(24):7835–7846. doi: 10.1016/j.ijhydene.2015.04.112
- Li T, Liu H, Zhao D, Wang L. Design and analysis of a fuel cell–supercapacitor hybrid construction vehicle. Int J Hydrogen Energy. 2016;41(28):12307–12319. doi: 10.1016/j.ijhydene.2016.05.040
- Jain M, Desai C, Williamson SS. Genetic-algorithm-based optimal powertrain component sizing and control strategy design for a fuel cell hybrid electric bus. Proc. IEEE VPPC. 2009:980–985. doi: 10.1109/VPPC.2009.5289740
- Li G, Chen J, Zheng X, et al. Research on energy management strategy of hydrogen fuel cell vehicles. Proc. Chinese Automation Congress (CAC). 2020:7604–7607. doi: 10.1109/CAC51589.2020.9326669
- Hu X, Murgovski N, Johannesson LM, Egardt B. Optimal dimensioning and power management of a fuel cell/battery hybrid bus via convex programming. IEEE/ASME Trans Mechatron. 2015;20(1):457–468. doi: 10.1109/TMECH.2014.2336264
- Salmasi FR. Control strategies for hybrid electric vehicles: evolution, classification, comparison and future trends. IEEE Trans Veh Technol. 2007;56(5):2393–2404. doi: 10.1109/TVT.2007.899933
- Sciarretta A, Guzzella L. Control of hybrid electric vehicles. IEEE Control Syst Mag. 2007;27(2):60–70. doi: 10.1109/MCS.2007.338280
- Rizzoni G, Onori S. Energy management of hybrid electric vehicles: 15 years of development at the Ohio State University. Oil Gas Sci Technol – Rev IFP Energies nouvelles. 2015;70(1):41–54. doi: 10.2516/ogst/2014006
- Serrao L, Onori S, Rizzoni G. A comparative analysis of energy management strategies for hybrid electric vehicles. J Dyn Syst Meas Control. 2011;133(3):031012. doi: 10.1115/1.4003267
- Tate ED, Boyd SP. Finding ultimate limits of performance for hybrid electric vehicles. SAE Technical Paper. 2000. doi: 10.4271/2000-01-3099
- Delprat S, Lauber J, Guerra T-M, Rimaux J. Control of a Parallel Hybrid Powertrain: Optimal Control. IEEE Transactions on Vehicular Technology. 2004;53:872–881. doi: 10.1109/TVT.2004.827161
- Lin Ch-Ch, Peng H, Grizzle J, Kang J-M. Power management strategy for a parallel hybrid electric truck. Control Systems Technology. IEEE Transactions. 2003;11:839–849. doi: 10.1109/TCST.2003.815606
- Anisimov VR. Development of a mathematical model for calculating energy parameters of a hydrogen-powered vehicle with a combined power plant. Gruzovik. 2025;(7):15–21. doi: 10.36652/1684-1298-2025-7-15-21 (In Russ.) EDN: ORAHKW
- Chichekin IV, Levenkov IY, Zuenkov PI, Maksimov RO. Forming the steering-wheel angle control law to maintain a set vehicle trajectory. Trudy NAMI. 2019;3(278):53–61. (In Russ.) EDN: FGHOWX
- Klimov AV, Baurzhan KO, Akop VA, et al. Detecting wheel slip to suppress self-excited oscillations in braking mode. World Electr Veh J. 2024;15(8):340. doi: 10.3390/wevj15080340
- Keller A, Aliukov S, Anchukov V, et al. Investigations of power distribution in transmissions of heavy trucks. SAE Technical Paper. 2016. doi: 10.4271/2016-01-1100 EDN: FHAZAU
- Perez HE, Hu X, Dey S, Moura SJ. Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics. IEEE Trans Veh Technol. 2017;66(9):7761–7770. doi: 10.1109/TVT.2017.2676044 EDN: WVWPYZ
- Pham QT, Oliver DW. Infiltration of air into cold stores. In: Proc. 16th Int. Congress of Refrigeration. 1983;4:67–72.
- Pulvirenti B, Puccetti G, Semprini G. Dynamic energy consumption modeling for HVAC systems in electric vehicles. Applied Sciences. 2025;15(7):3514. doi: 10.3390/app15073514 EDN: PNNTMK
- Jha KK, Bhanot V, Ryali V. A simple model for calculating vehicle thermal loads. SAE Technical Paper. 2013. doi: 10.4271/2013-01-0855
Supplementary files









