Estimation of influence of ride smoothness of transport-technological machines on driving safety in off-road conditions

Cover Page

Cite item

Abstract

BACKGROUND: Driving safety of transport-technological machines, especially in off-road conditions, largely depends on the stiffness and damping of suspension. These properties directly affect the ride smoothness and static transverse stability of the machine on a slope, ensure the ability of long-term motion on rough roads in the range of operating velocities without exceeding the established limits of vibration accelerations, causing unpleasant sensations and rapid fatigue of a driver, constant contact of wheels with the ground, as well as avoiding excessive wheel bump. Therefore, it is necessary to provide the suspension with the required elastic and damping characteristics by using a pneumohydraulic shock absorber in the design and to evaluate its effect on the safety of driving in off-road conditions.

AIM: Development of a method for assessing the impact of ride smoothness of transport and technological machines on the main indicators of driving safety in off-road conditions in the development of new technical solutions aimed at improving the ride smoothness.

METHODS: Modeling of oscillatory processes of the machine masses connected with each other by stiffness-damping links at unsteady and steady oscillations, modeling of the influence of the stiffness of the elastic suspension element on the static transverse stability of the machine on a slope are performed in the Mathcad software environment.

RESULTS: As a result of mathematical modeling of oscillatory processes of masses of the machine it was established that the application of the proposed shock absorber allows in case of driving over a single bump of 0.08 m height at a speed of 30 km/h to reduce body displacement from 0,070 m to 0,056 m and its acceleration from 3,50 m/s2 to 1,35 m/s2, there by achieving complete damping of the oscillatory process of the masses already in the fourth period, and in the case of driving over a sinusoidal bump, the oscillatory process is largely stabilized, the wheel copies the profile of the bump, as a result of which the movement of the body decreases from 0,045 m to 0,030 m, and the acceleration of the body after the transition process decreases from 2,2 m/s2 to 0,8 m/s2. The analysis of evaluation of influence of smooth running on static transverse stability of the machine has shown that as a result of taking into account the elasto-hydraulic characteristics of the shock absorber and the pneumatic tires themselves it is possible to increase the angle of static stability on lateral overturning from 38° to 43° with maximum permissible angle of body roll of 8.4°.

CONCLUSION: The knowledge of methods of estimation of influence of ride smoothness of transport-technological machines on the main indicators of driving safety in off-road conditions makes it possible to analyze the efficiency of application of the proposed technical solutions aimed at increasing the ride smoothness of the machine in off-road conditions.

About the authors

Roman R. Bukirov

St. Petersburg State University of Architecture and Civil Engineering

Author for correspondence.
Email: bukirov_r.r.-king@mail.ru
ORCID iD: 0009-0003-9303-3142
SPIN-code: 7768-2713

Postgraduate of the Ground Transport and Technological Machines Department

Russian Federation, Saint Petersburg

References

  1. Novikov VV, Ryabov IM, Chernyshov K.V. Vibration-protective properties of suspensions of motor vehicles. Moscow, Vologda: Infra-Inzheneriya; 2021. (In Russ.) EDN: FRSPKX
  2. Novikov VV, Chernyshov KV, Pozdeev AV, et al. Combined damping systems in suspensions of motor vehicles. Moscow; Vologda: Infra-Inzheneriya; 2024. (In Russ.)
  3. Novikov VV, Chernyshov KV, Pozdeev AV. Calculation of the systems of motor vehicles suspension. Moscow; Vologda: Infra-Engineering; 2024. (In Russ.)
  4. Repin SV, Bukirov RR, Vasilieva PV. Study on effects of damping characteristics of base chassis suspension on operational safety of transport and handling machinery. In: Transportation Research Procedia: 14, Saint Petersburg, October 21–24, 2020. Saint Petersburg; 2020:574–581. doi: 10.1016/j.trpro.2020.10.069 EDN: MTWSYH
  5. Repin S, Bukirov R, Vorontsov I, et al. Improving the movement smoothness of a mobile repair shop for machinery servicing in the Arctic // Transportation Research Procedia, St. Petersburg, 02–04 June 2021. St. Petersburg, 2021;553–561. doi: 10.1016/j.trpro.2021.09.084 EDN: DJBMGB
  6. Bukirov RR. Modeling of damping processes of suspension damping of transport-technological means on the basis of automobile chassis in the Arctic operating conditions. In: Technical provision of accessibility of the Arctic regions: Proceedings of the III All-Russian scientific seminar, St. Petersburg, October 27, 2022. St. Petersburg State University of Architecture and Civil Engineering, 2022:57–65. (In Russ.) EDN: EAMVYY
  7. Dubrovskiy AF, Abramov MI, Sakulin YuA. Selection of suspension parameters of “Ural” trucks to increase the speed of movement on worn-out dirt roads. Bulletin of Orenburg State University. 2014;10(171):66–75 (In Russ.) EDN: TPNREB
  8. Repin SV, Maslennikov NA, Orlov DS, et al. Investigation of the processes of smooth running of transport-technological machines based on truck chassis in difficult road conditions. Transport, Mining and Construction Engineering: Science and Production. 2023;23:76–84. (In Russ.) doi: 10.26160/2658-3305-2023-23-76-84 EDN: UMNUWF
  9. Reimpel Y. Car chassis: Shock absorbers, tires and wheels. Moscow: Mashinostroenie; 1986 (In Russ.)
  10. Rotenberg R.V. Car suspension. Vibrations and smooth running. M.: Mashinostroenie; 1972 (In Russ.)
  11. Ablaev R.R., Chernomorets D.I. Influence of pneumatic suspension condition on stability and controllability of the vehicle. International Journal of Humanities and Natural Sciences. 2021;4-1(55):10–13. (In Russ.) doi: 10.24412/2500-1000-2021-4-1-10-13 EDN: UWEFHA
  12. Tarasik VP. Theory of vehicle motion. Saint Petersburg: BHV-Peterburg; 2022. (In Russ.) EDN: FOWIQZ
  13. Ageykin YaS. Passability of automobiles. M.: Mashinostroenie; 1981. (In Russ.)
  14. Mishuta DV, Mikhailov VG. Influence of design parameters of the car and its suspension on the stability and controllability of the staff car. Bulletin of the Belarusian-Russian University. 2013;3(40):30–36. (In Russ.) doi: 10.53078/20778481_2013_3_30 EDN: RRYLSR
  15. Safiullin RN, Kerimov MA, Valeev DH. Design, calculation and operational properties of transport and transportation-technological machines: training manual. St. Petersburg: Lan; 2022. (In Russ.) EDN: YIIXXP
  16. Tint NV, Alakin VM. Investigation of the influence of the body roll on the transverse stability of a cargo van when turning. Proceedings of R.E. Alekseev NSTU. 2022;3(138):106–113. (In Russ.) doi: 10.46960/1816-210X_2022_3_106 EDN: SMGIQF
  17. Krivtsov SN, Krivtsova TI, Stepanov NV. Testing of wheeled machines: training manual. Molodezhny: IrGAU; 2020. (In Russ.)
  18. Samusenko MF. Design and calculation of heavy-duty vehicles. Design and calculation of suspensions. Mobility and stability: training manual. Moscow: MADI; 1984. (In Russ.)
  19. Fomin VM. Automobiles. Theory of operational properties of automobiles. Moscow: RUDN; 2008. (In Russ.)
  20. Chernyshov KV, Ryabov IM, Novikov VV, et al. Dynamics of motion. Adjustable suspensions: training manual. Moscow; Vologda: Infra-Inzheneriya; 2023. (In Russ.)
  21. Derbaremdiker AD. Hydraulic shock absorbers of automobiles. M.: Mashinostroenie, 1969. (In Russ.)
  22. Patent RUS for useful model № 204114/ 07.05.2021. Bull. №. 13. Artemyev V.N., Repin S.V., Dobromirov V.N., Bukirov R.R. et al. Pneumohydraulic shock absorber. (In Russ.) EDN: BBBIHQ
  23. Safonov R.A. Typical defects of the upper road surface in Russia. Bulletin of the South Ural State University. Series: Construction and Architecture. 2020;20(2):75–84. (In Russ.) doi: 10.14529/build200210 EDN: WQYSOM
  24. Taberlet N, Morris SW, McElwaine JN. Washboard road: the dynamics of granular ripples formed by rolling wheels. Physical review letters. 2007;99(6). doi: 10.1103/PhysRevLett.99.068003
  25. Repin SV, Dobromirov VN, Orlov DS. Investigation of the elastic characteristic of a new pneumohydraulic shock absorber. Bulletin of Civil Engineers. 2019;5(76):260–269. (In Russ.) doi: 10.23968/1999-5571-2019-16-5-260-269 EDN: KIGLHH
  26. Dobromirov VN, Gusev EP, Karunin MA, et al. Shock absorbers. Design. Calculation. Testing. Moscow: MGTU «MAMI»; 2006. (In Russ.)
  27. Repin SV, Dobromirov VN, Orlov DS, et al. Investigation of Damping Characteristic of a New Hydropneumatic Shock Absorber. Vestnik of Civil Engineers. 2020;2(79):187–194. (In Russ.) doi: 10.23968/1999-5571-2020-17-2-187-194 EDN: MYJPDN
  28. Patent RUS for useful model № 194004 / 22.11.2019. Bull. №. 33. Repin SV, Evtyukov SS, Orlov DS. Two-tube hydropneumatic shock absorber. (In Russ.) EDN: OTWWNB
  29. Patent RUS for useful model № 208894 / 20.01.2022. Bull. №. 2. Repin SV. Pnevmohydraulic shock absorber. (In Russ.) EDN: SEPQCX
  30. Patent RUS for useful model № 204317 / 19.05.2021. Bull. № 14. Repin SV. Single-tube hydropneumatic shock absorber. (In Russ.) EDN: IBGLNO
  31. Patent RUS for useful model № 218675 / 05.06.2023. Bull. № 16. Bukirov RR. Pneumohydraulic shock absorber with a remote pneumatic chamber. (In Russ.) EDN: QUJXCP
  32. Ruban VG, Matva AM. Solution of problems of dynamics of railway crews in Mathcad package: training manual. Rostov on Don: RGUPS; 2009. (In Russ.)
  33. Rykov SP. Fundamentals of inelastic resistance theory in pneumatic tires with applications. St. Petersburg: Lan; 2017. (In Russ.) EDN: YTYEGM
  34. Levkovsky DI, Makarov RI. System approach to research and development of information systems. Vladimir: VlGU; 2010. (In Russ.)
  35. Volkov IV, Ruban VG. Comparative studies of the dynamic qualities of the variants of the crew part of an eight-axle electric locomotive. In: Design and research issues of mainline and industrial electric locomotives: Collection of scientific works. Tbilisi; 1990;55–59. (In Russ.)
  36. Certificate RUS of state registration of computer program № 2024614880 / 29.02.2024. Bukirov RR. Program of calculation of transverse static stability of transport-technological machines on a slope, taking into account the characteristics of suspension. (In Russ.)
  37. GOST 31507-2012. Motor vehicles. Steerability and stability. Technical requirements. Test methods. Introduced. 2013-10-01. Moscow: Standardinform; 2013. (In Russ.)
  38. Certificate RUS of state registration of computer program № 2023683969 / 13.11.2023. Bukirov RR. Program of calculation and estimation of energy intensity of elastic element of pneumohydraulic shock absorber with progressive elastic characteristic. (In Russ.) EDN: HIPCSD
  39. GOST 31191.1-2004. Vibration and shock. Measurement of total vibration and assessment of its effect on humans. Part 1. General requirements. Annex B. Introduced on 2018-02-01. Moscow: Standardinform, 2010. (In Russ.)
  40. Shekhovtsov VV. Podressorivanie kabinsnykh kabinsnykh i caterpillarnykh machineries. Moscow, Vologda: Infra-Engineering; 2023 (In Russ.)
  41. Technical characteristics of the tire KAMA-URAL 390/95R20. [internet]. Accessed: 16.01.2023. Available from: https://www.td-kama.com/ru/tyre_catalog/213476/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Design parameters of the pneumohydraulic shock absorber with an additional pneumatic chamber according to the patent for utility model RU № 218675: A — a gas compensation cavity; B and C — lower and upper liquid cavities; D and E — a gas spring; Sh — total shock absorber stroke; Sd — rebound stroke; Sc and Sst — compression stroke and static deformation; 1 — a safety valve; 2 — an adjusting valve; 3 — a lower cylinder; 4 — an upper cylinder; 5 — an additional pneumatic chamber; 6 — a sealing sleeve; 7 — a hydraulic piston; 8 — a pneumatic piston; 9 — a guiding (separating) sleeve; 10 — a damping gasket; 11 — a top cover of the shock absorber; 12, 13 — lugs for shock absorber mounting; 14 — a retaining ring; 15 — a rod; 16 — a protective casing.

Download (198KB)
3. Fig. 2. Calculation scheme of a two-mass oscillating system: a — passing a bump; b — passing a sinusoidal bump; M — sprung mass; m — unsprung mass; cs — gas spring stiffness of the shock absorber; ct — tire stiffness; r — damping capacity of the shock absorber; rt — damping capacity of the tires; z1, z2 — vertical displacement of unsprung and sprung mass; Va — direction of motion (velocity); q — kinematic disturbance; S0 — beginning of a bump; s — considered section of the road; l — length of a bump; H — height of bumps.

Download (138KB)
4. Fig. 3. Calculation scheme of the machine under static transverse stability: Rt — average tire track, m; Rs — mounting distance of shock absorbers in the suspension, m; hg — height of the center of mass, m; cs — stiffness of the elastic element of the shock absorber, N/m; ct — stiffness of pneumatic tires, N/m; M sin(ψ) — transverse component of the gravity force; ψ — body roll angle; β — angle of the transverse slope of the road.

Download (91KB)
5. Fig. 4. Results of modeling the elastic characteristic of the PGA: 1 — gas spring force without additional chamber; 2 — gas spring force with additional chamber; 3 — line showing the shock absorber position under static load; 4 — tangent line to the static load occurring in the design without additional chamber; 5 — tangent line to the static load occurring in the structure with additional chamber; Sdr — rebound stroke; Sc — compression stroke; Sdc — suspension stroke at which the rebound buffer is activated; Sst — static stroke; C1 — angle of inclination to the tangent line 4; C2 — angle of inclination to the tangent line 5; S1 and S2 — reduced static deflections.

Download (97KB)
6. Fig. 5. Unsteady oscillatory process of the mass of the machine in time t (sec.), resulting from the passage of a single bump: Z1 and Z2 — displacement of unsprung and sprung masses; a — displacement (stroke) of the machine masses without the additional chamber; b — acceleration of the body without the additional chamber; c — displacement (stroke) of the car masses with the additional chamber; d — acceleration of the body with the additional chamber.

Download (222KB)
7. Fig. 6. Characteristics of steady-state oscillatory processes of the car masses by time t (sec.), obtained as a result of passing a sinusoidal bump: Z1 and Z2 — displacement of unsprung and sprung masses; a — displacement (stroke) of the car masses without an additional chamber; b — acceleration of the body without an additional chamber; c — displacement (stroke) of the car masses taking into account an additional chamber; d — acceleration of the body taking into account an additional chamber.

Download (430KB)
8. Fig. 7. Influence of the stiffness of the elastic element of the shock absorber on the static transverse stability of the machine on a slope: 1 — dependence when using a PHA with an additional pneumatic chamber; 2 — dependence when using a PHA without an additional pneumatic chamber.

Download (39KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».