Systematization of steam cultivators

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: When applied to the soil during the cultivation process, the moisture and air permeability of the layer improves, which favors the activity of microorganisms and the growth and development of plants. The increase in the yield of agricultural crop production directly depends on the level of technology of the new generation machinery. Therefore, the improvement of their designs in order to increase the level of technology of the new generation machinery is a relevant task of the agricultural industry.

OBJECTIVE: Systematization and ordering of known designs of steam cultivators, identification of their advantages and disadvantages.

METHODS: The method of monographic examination of the structures of steam cultivators, both the machine as a whole and the main working bodies separately, was used on the basis of well-known scientific studies and the results of state tests. Thus, the really working steam cultivators recommended for use in agricultural production were considered. In addition, the patented designs of the working bodies of steam cultivators were analyzed. The efficiency of steam cultivators was determined based on the results of state tests of the Povolzhsky, Northwestern, Siberian, Kuban, North Caucasian, Central Chernozem, Kirov, Vladimir machinery testing stations over the past 10 years.

RESULTS: The paper contains a review of steam cultivators and their designs. The classification of cultivators by 3 types is given: by the type of main working bodies (paws); by the type of additional working bodies (rollers, harrows, rods); by the type of attachment to the tractor (trailed, mounted). Their advantages and disadvantages are considered. A review of studies on improving the designs of steam cultivators to improve the tillage quality and to reduce energy consumption for tillage is given. The working bodies (paws), the frame parts for mounting the main working bodies, the strut and the design of additional working bodies of steam cultivators are being modernized. Theoretical studies on improving the efficiency of cultivators are considered. The conditions for achieving and improving the tillage quality with a steam cultivator are revealed by determining the relationship of parameters with the indicators of the technological process. The application of computer simulation modeling in solving theoretical problems of study of the new working bodies is considered, advantages and disadvantages are revealed.

CONCLUSIONS: The systematization of steam cultivators presented in this paper is helpful to determine ways to further improvement of them.

About the authors

Galina G. Parkhomenko

“Donskoy” Agricultural Research Center

Email: parkhomenko.galya@yandex.ru
ORCID iD: 0000-0003-1944-216X
SPIN-code: 6048-2834

Cand. Sci. (Engineering), Leading Researcher of the Crop Farming Mechanization Department of the Laboratory of Field Crop Farming Mechanization

Russian Federation, Zernograd

Sergey I. Kambulov

“Donskoy” Agricultural Research Center; Don State Technical University

Email: kambulov.s@mail.ru
ORCID iD: 0000-0001-8712-1478
SPIN-code: 3854-2942

Dr. Sci. (Engineering), Associate Professor, Chief Researcher of the Crop Farming Mechanization Department of the Laboratory of Field Crop Farming Mechanization; Professor of the Technologies and Equipment for Processing Agricultural Products Department

Russian Federation, Zernograd; Rostov-on-Don

Dmitry S. Podlesny

“Donskoy” Agricultural Research Center; Don State Technical University

Email: podlesniy.dmitri@yandex.ru
ORCID iD: 0000-0002-6069-138X
SPIN-code: 5168-1664

Leading Engineer of the Crop Farming Mechanization Department of the Laboratory of Field Crop Farming Mechanization; Senior Lecturer of the Technologies and Equipment for Processing Agricultural Products Department

Russian Federation, Zernograd; Rostov-on-Don

Victor B. Rykov

“Donskoy” Agricultural Research Center; Don State Technical University

Email: rikovvb@gmail.com
ORCID iD: 0000-0003-1358-9312
SPIN-code: 8328-6310

Dr. Sci. (Engineering), Associate Professor, Chief Researcher of the Crop Farming Mechanization Department of the Laboratory of Field Crop Farming Mechanization; Professor of the Technologies and Equipment for Processing Agricultural Products Department

Russian Federation, Zernograd; Rostov-on-Don

Oleg A. Polushkin

Don State Technical University

Email: polushckinol@yandex.ru
ORCID iD: 0000-0002-4070-8121
SPIN-code: 3332-4049

Dr. Sci. (Engineering), Professor, Professor of the Machinery and Technology of Food Production Department

Russian Federation, Rostov-on-Don

Igor A. Khozyaev

Don State Technical University

Author for correspondence.
Email: khozyayev00@mail.ru
ORCID iD: 0000-0003-3821-2634
SPIN-code: 3033-8771

Dr. Sci. (Engineering), Professor, Professor of the Machinery and Technology of Food Production Department

Russian Federation, Rostov-on-Don

References

  1. Lachuga Y, Akhalaya B, Shogenov Y, et al. Combined Unit with Automated Adjustment of the Grip Width of the Cultivator Paw. In: Lecture Notes in Networks and Systems. Cham: Springer; 2023;509:1461–1466. doi: 10.1007/978-3-031-11058-0_147
  2. Lachuga Y, Akhalaya B, Shogenov Y, et al. Tillage Device of Precision Processing with Pulsed Blows of Compressed Air. In: Lecture Notes in Networks and Systems book series (LNNS). Cham: Springer; 2023;510:1897–1904 (2023). doi: 10.1007/978-3-031-11051-1_195
  3. Results of agricultural machinery testing on MIS. Official website of the Federal State Budgetary Institution “State Testing Center” Electronic resource. Access mode: http://www.sistemamis.ru/protocols/ (date of access 04/07/2023)
  4. Polokhin AM, Shmanev ND, Annenkov DA. Modern agricultural machines. VEMZ KPP-8V and kormmash KPS-4-3R. In: Resource Saving Technologies at Storage and Processing of Agricultural Production: materials of the XIV International Scientific and Practical seminar, Orel, June 28–29, 2018. Orel: Cartouche; 2018:220–223. (In Russ.)
  5. Priporov EV. Technological, energy and economic indicators of the universal steam cultivator. Izvestiya Orenburg State Agrarian University. 2020;3(83):198–201. (In Russ.) doi: 10.37670/2073-0853-2020-83-3-198-202
  6. Kaimakova AS, Gorbatyuk AP, Safarov RR, et al. Assessment of the effect of the method of connecting a wide-reach cultivator and tractor on the kinematics of the unit. Active ambitious intellectual youth to agriculture. 2020;2(9):41–47. (In Russ.)
  7. Rudenko NE, Kayvanov SD, Zavyalik FN. Innovative lancet tillage paw. Agricultural machinery and technologies. 2016;6:16–20. (In Russ.) doi: 10.22314/207375992016.6.1620
  8. Sazonov MV. Analysis of technological stability of the course of the combined working body on the depth of tillage. In: Innovative achievements of science and technology of the agroindustrial complex: Collection of scientific papers of the International scientific and practical conference, Kinel, December 13–16, 2016. Kinel: Samara State Agricultural Academy; 2017:666–673. (In Russ.)
  9. Priporov EV. Working bodies of steam cultivators. Electronic scientific journal. 2016;8(11):48–52. (In Russ.)
  10. Patent RUS No. 2354089 / 05/10/2009 / Burkov L.N. Steam cultivator (options). (In Russ.)
  11. Patent RUS Utility Model No. 132670 / 09/27/2013 Khinikadze TA. Universal frame of a multifunctional agricultural unit and a multifunctional agricultural unit (options). (In Russ.)
  12. Rakhimov RS, Okunev GA, Mazitov NK, et al. Russian technology and technology of production of organic agricultural products. Vestnik Bashkir State Agrarian University. 2022;1(61):116–126. (In Russ.) doi: 10.31563/1684-7628-2022-61-1-116-126
  13. Nesmian AYu, Tsench YuS, Kaimakova AS. Analysis of changes in the technical and technological level of steam cultivators in the XXI century. Technical service of machines. 2021;2(143):174–183. (In Russ.) doi: 10.22314/2618-8287-2021-59-2-174-183
  14. Lisunov OV, Boginya MV, Vasilyev A.A., et al. Review of machine designs for pre-sowing tillage. In: Resource-saving technologies in the agro-industrial complex of Russia: Proceedings of the II International Scientific Conference, Krasnoyarsk, November 25, 2021. Krasnoyarsk: Krasnoyarsk State Agrarian University; 2022:25–32. (In Russ.)
  15. Filippov AI, Zayats EV, Stukanov SV. Review of the working bodies of row cultivators and the development of new ones in the concept of ecological agriculture. Bulletin of the Belarusian State Agricultural Academy. 2020;4:121–126. (In Russ.)
  16. Mildzikhov VE. Analysis of the work of the cultivator’s working body for continuous tillage. In: Student science — agro-industrial complex: Scientific works of students of the Gorsky State Agrarian University. Vladikavkaz: Gorsky State Agrarian University; 2017:13–16. (In Russ.)
  17. Kolosovich EK, Korneev EA, Golovanov DA, et al. Comparative analysis of technical and operational characteristics of cultivators. In: Electronic scientific and methodological Journal of Omsk State Agrarian University. 2017;1(8):30. (In Russ.)
  18. Khudaikuliyev RR, Juraeva NB, Urinov AP. Patent research aimed at the development and improvement of designs of wide-range cultivators. Universum: technical sciences. 2020;1(70):28–32. (In Russ.)
  19. Merrill SD, Zobeck TM, Liebig MA. Field measurement of wind erosion flux and soil erodibility factors as affected by tillage and seasonal. Soil Sci. Soc. Am. J. 2022;86:1296–1311. (In Russ.) doi: 10.1002/saj2.20436
  20. Feskov SA, Orekhova GV, Dyachenko AV. Wear of pointed paws and the possibility of using compensating elements during their restoration. Design, use and reliability of agricultural machinery. 2016;1(15):159–165. (In Russ.)
  21. Mikhalchenkov AM, Feskov SA. Wear of cultivator paws of the Morris sowing complex. Dostizheniya nauki i tekhniki APK. 2013;10:55–58. (In Russ.)
  22. Mikhalchenkov AM, Feskov SA, Ryzhik VN. Computer technologies for measuring the wear of pointed paws of cultivators. Vestnik Bashkir State Agrarian University. 2016;2(54):89–93. (In Russ.)
  23. Feskov SA, Dianov XA, Grin AM. Dynamics and intensity of wear of branded and restored sowing paws of the Morris sowing complex. Proceedings of the Faculty of Engineering and Technology of the Bryansk State Agrarian University. 2017;1(1):36–48. (In Russ.)
  24. Lyulyakov IV, Buylov VN, Tarasyev ES. Working conditions of the lancet paw. In: Trends in the development of science and education. 2016;12-3:57–60. (In Russ.) doi: 10.18411/lj2016-3-62
  25. Kopithan K, Vijitha V, Sayanthan S, et al. Design, Fabrication and Performance Evaluation of Super Tine Cultivator. In: Proceedings of 7th International Conference on Dry Zone Agriculture (ICDA 2021). Faculty of Agriculture, University of Jaffna, Sri Lanka, 3rd and 4th December 2021. Jaffna:2021;99.
  26. Patent RUS №. 2111633 / 05/27/1998. Shadrin AP. Steam cultivator for tillage in forest areas that have emerged from under uprooting and combing out roots. (In Russ.)
  27. Padalcin KD, Kulaev EV. A new energy-saving steam cultivator KEMS-4. Rural mechanizer. 2015;1:5. (In Russ.)
  28. Radin SY, Buneev SS, Shubin SY, et al. Improving the reliability and efficiency of cultivators with s-shaped racks. In: Bulletin of Altai State Agricultural University. 2022;8(214):108–114. (In Russ.) doi: 10.53083/1996-4277-2022-214-8-108-114
  29. Saleev FI, Yakovlev VT. Improving the design of the cultivator rod drive. In: State and prospects of development of the agro-industrial complex: collection of scientific papers of the XII International Scientific and Practical Conference, Rostov-on-Don, February 27 – March 01, 2019. Rostov-on-Don: DSTU-PRINT LLC; 2019:537–541. (In Russ.) doi: 10.23947/interagro.2019.6.537-541
  30. Saleev FI, Yakovlev VT, Ponomarev MA. Analysis of drive designs of working bodies of “rod” cultivators for continuous surface tillage. In: Agrarian science in the XXI century: problems and prospects: collection of articles of the All-Russian Scientific and practical conference, Saratov, February 12–15, 2018 / Saratov State Agrarian University named after N.I. Vavilov. Saratov: Tsesain; 2018:557–561. (In Russ.)
  31. Yakovlev VT, Saleev FI. Improving the design of a cultivator rod attachment for continuous surface tillage. Polzunovsky Almanac. 2018;3:73–76. (In Russ.)
  32. Patent RUS Utility model No. 78625 / 10.12.2008. Rudenko NE, Kulaev EV, Lyakhov AP. Modular steam cultivator. (In Russ.)
  33. Talarczyk W, Zbytek Z. Uniwersalna konstrukcja kultywatora podorywkowego i obsypnika do ziemniaków. Zeszyty problemowe postкpуw nauk rolniczych. 2009;543:355–364.
  34. Andreev VL, Demshin SL, Ilyichev VV, et al. Multifunctional tillage unit with replaceable working bodies. Bulletin NGIEI. 2018;11(90):87–102. (In Russ.)
  35. Abbaspour-Gilandeh Y, Fazeli M, Roshanianfard A, et al. Effect of Different Working and Tool Parameters on Performance of Several Types of Cultivators. Agriculture. 2020;10:145. doi: 10.3390/agriculture10050145
  36. Priporov EV, Priporov IE, Samurganov GE. Comparative analysis of cultivators for pre-sowing tillage. Izvestia Orenburg State Agrarian University. 2020;1(81):77–81. (In Russ.)
  37. Rudenko NE, Lyakhov AP. Resource-saving modular steam cultivator. Proceedings Of Gorsky State Agrarian University. 2009;46(2):93–96. (In Russ.)
  38. Patent RUS Utility Model No. 135875 / 12/27/2013 Nurhakimov R.H. Energy-saving paw. (In Russ.)
  39. Myalo VV, Myalo OV, Demchuk EV, et al. Basic Parameters Substantiation of the Cultivator Working Body for the Continuous Tillage in the System of Ecologically Safe Resource-Saving Agriculture. IOP Conf. Ser.: Earth Environ. Sci. 2019;224. doi: 10.1088/1755-1315/224/1/012023
  40. Uncovered TS. Fighting the blockage of the lancet foot rack with a cutting disc. In: The contribution of young scientists from agricultural universities and research institutes to solving the problems of import substitution and food security in Russia: Proceedings of the International Scientific and Practical Conference, Volgograd, September 16–17, 2021. Volgograd: Volgograd State Agrarian University; 2021:159–162. (In Russ.)
  41. Wang M, Fu ZL, Zheng ZQ, et al. Effect of Performance of Soil Cultivator with Different Surface Textures of Shovel Wing. Agriculture. 2021;11. doi: 10.3390/agriculture11111039
  42. Nekhoroshev DA, Shevketov EM. Improving the design of the working organ of the KPS-4 steam cultivator. In: Strategy for the development of agriculture in modern conditions — continuation of the scientific heritage of Listopad G.E., Academician VASHNIL (RASKHN), Doctor of Technical Sciences, Professor, Volgograd, November 06–07, 2018. Volgograd: Volgograd State Agrarian University; 2019:28–31. (In Russ.)
  43. Shovkoplyas AV, Seliverstov DS. Review of existing designs of pointed paws and ways to improve them. In: Agrotechnological processes within the framework of import substitution: materials of the International Scientific and Practical Conference, Michurinsk, October 25–27, 2016. Michurinsk: BIS; 2016:295–299. (In Russ.)
  44. Babitskiy L, Belov A, Moskalevich V. Increasing the effectiveness of impact on soil of cultivator working bodies. AIP Conference Proceedings. 2022;2503(1). doi: 10.1063/5.0119933
  45. Babitsky LF, Sobolevsky IV, Kuklin VA. Substantiation of parameters of vibro-shock springs of cultivator paws. Agrarian science of the Euro-North-East. 2017;2(57):76–79. (In Russ.)
  46. Chertkoev EM. Improved working bodies of cultivators for continuous processing of soils clogged with stones. In: Bulletin of scientific works of young scientists, graduate students, undergraduates and students of the Gorsky State Agrarian University. Vladikavkaz: Gorsky State Agrarian University; 2018:92–93. (In Russ.)
  47. Mildzikhov VE, Kalaev SS, Kubalov MA. Oscillatory working organ of a cultivator for continuous tillage. In: Achievements of science in agriculture: Materials of the All-Russian Scientific and Practical Conference (correspondence), Vladikavkaz, October 02–03, 2017. Vladikavkaz: Gorsky State Agrarian University; 2017:275–280. (In Russ.)
  48. Khabibov SR, Babaeva AV. Fundamentals of stabilization of cutting weeds with a cultivator with right- and left-handed paws. Scientific life. 2021;16(8):1129–1139. (In Russ.) doi: 10.35679/1991-9476-2021-16-8-1129-1139
  49. Patent RUS № 2462852 / 10.10.2012. Mikhalchenkov AM, Kovalev AP, Budko SI, Komogortsev VF. Pointed cultivator paw. (In Russ.)
  50. Patent RUS № 32358 / 09/20/2003. Tolstov VK, Buretsky AG, Bobrov VG. Cultivator’s paw. (In Russ.)
  51. Patent RUS № 2282336 / 27.07.2006. Zhuk AF, Shishimorov SA. Pointed paw. (In Russ.)
  52. Rudenko NE, Gorbachev SP, Kalugin DS, et al. Energy-saving lancet tillage paw. Tractors and Agricultural Machinery. 2015;11:11–13. (In Russ.)
  53. Dinakarraj B, Chander R, Matam P, et al. Design and analysis of rotovator and cultivator blades by various materials using fea. The Journal Of Oriental Research Madras. 2021;1:149–156.
  54. Makarenko AN, Martynova IV. To substantiate the shape of the working surface of a cultivator paw. In: Actual problems of agroengineering and ways to solve them, Maysky, November 19, 2018. Maysky: Belgorod State Agrarian University named after VY Gorin; 2018:94–99. (In Russ.)
  55. Patent RUS №. 190298 / 06/25/2019. Blokhin VN, Kuvshinov NM, Sluchevsky AM, et al. Flat-cutting hollow pointed foot. (In Russ.)
  56. Patent RUS № 194605 / 17.12.2019. Blokhin VN, Sluchevsky AM, Kuznetsov VV, et al. Hollow pointed foot. (In Russ.)
  57. Seliverstov DS. To substantiate the design of a pointed paw. In: Scientific achievements and discoveries of modern youth: a collection of articles by the winners of the international scientific and practical conference: in 2 parts, Penza, February 17, 2017. Penza: Science and Education; 2017:266–268. (In Russ.)
  58. Patent RUS № 209520 / 03/16/2022. Pikmullin GV, Mardanov RH, Vagizov TN, Nurmiev AA. The working body of the tool for non-tillage tillage. (In Russ.)
  59. Patent RUS № 103267 / 04/10/2011 Pikmullin GV, Bulgariev GG, Iblyaminov FF. The working body of the tool for non-tillage tillage. (In Russ.)
  60. Patent USSR № 1768012 / 07.10.1992. Taranin VI, Zemlyansky BA, Rykov VB. Cultivator working body. (In Russ.)
  61. Mudarisov SG, Sultanov ShM. Substantiation of the working surface of a pointed paw with variable parameters. Dostizheniya nauki i tekhniki APK. 2006;8:35–36. (In Russ.)
  62. Patent RUS № 2105447 / 27/02/1998 Shadrin AP. Working body for cultivator. (In Russ.)
  63. Patent RUS № 2738899 / 12/18/2020. Martynov IS, Shaprov MN. Working body for surface tillage. (In Russ.)
  64. Patent RUS № 112234 / 04/16/1957. Nimtsov AF. Flat-cut cultivator foot. (In Russ.)
  65. Patent RUS № 2749462 / 11.06.2021. Nekhoroshev DD, Nekhoroshev ND, Nekhoroshev DA. Cultivator working body. (In Russ.)
  66. Patent RUS № 2758935 / 03.11.2021. Nekhoroshev DD, Nekhoroshev ND, Nekhoroshev DA. Cultivator’s working body. (In Russ.)
  67. Patent RUS № 2679162 / 02/06/2019. Bulgariev GG, Yarullin FF, Valiev AR, Mukhamadyarov FF. The working body of the cultivator-planar cutter. (In Russ.)
  68. Patent RUS № 204753 / 09.07.2021. Slesarev VN, Sineshchekov VE, Malygin AE, Slesarev AV. Cultivator paw. (In Russ.)
  69. Patent RUS № 2303340 / 27.07.2007. Zvolinsky VP, Mukhortov VI, Saldaev AM. Working body for steam treatment. (In Russ.)
  70. Torikov VE, Starovoitov SI. On the work of the universal pointed paw. Vestnik Bashkir State Agrarian University. 2016;5(57):56–60. (In Russ.)
  71. Myalo VV, Myalo OV, Demchuk EV. Substantiation of the main parameters of the cultivator’s working body for continuous tillage. Vestnik of Omsk SAU. 2019;2(34):153–164. (In Russ.)
  72. Patent RUS № 2294074 / 02/20/2007. Zvolinsky VP, Tyutyuma NV, Saldaev AM. Cultivator’s paw.
  73. Patent RUS № 2295214 / 03/20/2007. Rakov EE, Rakov EY. Cultivator paw. (In Russ.)
  74. Rudenko NE, Padalcin KD. Investigation of the process of interaction of a combined working organ with soil. Agricultural machinery and technologies. 2014;2:26–28. (In Russ.)
  75. Shovkoplyas AV, Burlakov PA. A pointed paw with an asymmetric toothed profile, In: Science and education: current issues, achievements and innovations: collection of articles of the III International Scientific and Practical Conference: at 2 o’clock, Penza, June 07, 2022. Penza: Science and Education (IP Gulyaev G.Yu.); 2022:89–92. (In Russ.)
  76. Rudenko NE, Padalcin KD. Substantiation of the parameters of a moisture-saving pointed paw. Agricultural Bulletin of Stavropol Region. 2013;3(11):64–67. (In Russ.)
  77. Pozdnyakov NA. Methodology for determining the effect of soil forces on the working organs of agricultural implements. The International Technical-Economic Journal. 2011;1:86–91. (In Russ.)
  78. Pozdnyakov NA. Mathematical model for determining the resistance of cutting working bodies. The International Technical-Economic Journal. 2011;2:93–99. (In Russ.)
  79. Starovoitov SI. On the construction of projections of a pointed paw with a variable crumbling angle and a transformed blade. Vestnik Bashkir State Agrarian University. 2015;6(52):47–53. (In Russ.)
  80. Shakhov VA, Uchkin PG, Aristanov MG. Theoretical study of traction resistance of lancet paws of cultivators. In: Scientific and information support of innovative development of agro-industrial complex: Materials of the XIV International scientific and practical Internet Conference, Moscow region, Pushkinsky district, Pravdinsky district, June 07–09, 2022. Moscow: Russian Scientific Research Institute of Information and Technical and Economic Research on engineering and technical support of the agro-industrial complex; 2022:735–742. (In Russ.)
  81. Vasilenko VV, Vasilenko SV, Borzilo VS. The zone of soil loosening with a cultivator paw. In: Agricultural machinery and technologies. 2018;12(4):48–52. (In Russ.) doi: 10.22314/2073-7599-2018-12-4-48-52
  82. Starovoitov SI, Grin AM, Lebedev DE. About the angles of the universal pointed foot. Vestnik Bashkir State Agrarian University. 2016;3(55):76–82. (In Russ.)
  83. Gnusov MA, Lysych MN. Analysis of existing numerical methods for modeling the interaction of working bodies of earthmoving and tillage machines with soil media. Voronezhskiy nauchno-tehnicheskiy vestnik. 2020;3(3(33)):128–139. (In Russ.) doi: 10.34220/2311-8873-2020-3-3-128-139
  84. Malikov VN, Ishkov AV, Dmitriev SF. Assessment of the stress-strain state of the pointed paw using computer 3D modeling. High-performance computing systems and technologies. 2021;5(2):53–61. (In Russ.)
  85. Obidov А, Nuriev K, Allanazarov M, et al. Parameters of tillage working bodies. E3S Web of Conferences. 2021;284. doi: 10.1051/e3sconf/202128402012
  86. Chen Y, Li B. Measurement and modelling of soil displacement from sweeps with different cutting widths. Biosystems Engineering. 2017;161:1–13.
  87. Ovsyanko V, Petrovsky A. The computer modeling of interaction between share-moulboard surface of plough and soil. Journal of Research and Applications in Agricultural Engineering. 2014;1(59):100–103.
  88. Barker M.E. Predicting loads on ground engaging tillage tools using computational fluid dynamics. In: Digital Repository. Iowa State University, 2008:195.
  89. Tenu I. Impact of Agricultural Traffic and Tillage Technologies on the Properties of Soil. In: World’s largest Science, Technology & Medicine Open Access book publisher. 2012;10:263.
  90. Urbán M, Kotrocz K, Kerényi G. Investigation of the soil – tool interaction by SPH (Smooth Particle Hydrodynamics) based simulation. American Transaction on Engineering & Applied Sciences. 2002;1–6.
  91. Ishkov A, Malikov V, Shegolev A. Influence of the Composition of Boriding Mixture on the Saturation of the Surface of Various Steels with Boron during High-Speed HFC-Boriding. Materials Science Forum. 2021;1022:127–135.
  92. Anutov RM, Kotelnikov VYa, et al. Parameters of stability of the course of the soil-processing unit. Modern high-tech technologies. 2012;12:12–13. (In Russ.)
  93. Lobachevsky YaP, Elsheikh AH. Theoretical substantiation of the optimal distance between the ripping paws and the discs of a tool with combined working bodies. Bulletin of the Federal State Educational Institution of Higher Professional Education “V.P. Goryachkin Moscow State Agroengineering University”. 2008;4(29):36–39. (In Russ.)
  94. Zakharov PV, Lysych MN, Shabanov ML. Modeling the workflow of a rotary cultivator. Modern problems of science and education. 2015;2–2:127. (In Russ.)
  95. Bulgariev GG, Yunusov RG. Substantiation and determination of the main parameters of a spiral-plate working organ. Vestnik of Kazan State Agrarian University. 2013;8(3(29)):57–62. (In Russ.)
  96. Martynenko AS, Ustinov NN. A model of the stress-strain state of a cultivator stand in the form of a flexible tubular element with an inverse ratio of axes. In: Development of scientific, creative and innovative activity of youth: Materials of the IX All-Russian scientific and practical Conference of young scientists, Lesnikovo, November 29, 2017. Lesnikovo: Kurgan State Agricultural Academy named after T.S. Maltsev; 2017:69–73. (In Russ.)
  97. Anutov RM, Kotelnikov VYa, Kozyavin AA, et al. Dynamic studies of frames and working organs of a cultivator. Modern high-tech technologies. 2013;3:9–10. (In Russ.)
  98. Nikonov MV. Forceful effects on the cultivator’s paw in the process of work and the possibility of their assessment. Bulletin of Michurinsk State Agrarian University. 2015;3:177–181. (In Russ.)
  99. Patent RUS № 2107275 / 20/03/1998 Kravchenko VA, Yarovoy VG, Parkhomenko SG, Melikov IM, Yarovoy AVTire tester. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».