Justification of usability of the heat accumulator of phase transition in vehicles’ engines pre-start warming-up procedure

Cover Page

Cite item

Abstract

BACKGROUND: The trend of activity increase in exploration of transpolar areas has been observed for recent years. Negative temperatures, the key feature of the North, have a negative impact on state of piston engines of on-ground transport. In engine’s cylinders, the process of transition of liquid fuel in gaseous state goes before the mixture ignition. Negative temperatures affect the phase transition process and impede the working body homogenization. Therefore, engine pre-start warming-up procedure goes before successful engine start. Existing typical methods of pre-start warming-up demand fuel consumption and, generally, significant staff resources. Achievements of modern science offer new technologies for solving the issues of warming-up procedures based on accumulating, storage and deployment of heat energy produces by an engine during its operation.

AIM: Justification of usability of the heat accumulator of phase transition in pre-start warming-up procedure for vehicles’ engines operating in conditions of negative temperatures of cold climate.

METHODS: Numerical values of heat accumulator charging period depending on temperature of heat-accumulating material at various initial temperatures of coolant as well as values of the discharging period depending on temperature of heat-accumulating material at various coolant rates were defined experimentally. High-density polyethylene was used as a heat-accumulating material.

RESULTS: As a result of the described experiment, curves of heat accumulator charging period depending on heat-accumulating material temperature at various initial temperatures of coolant and curves of heat accumulator discharging period depending on coolant temperature at various coolant rates were built.

CONCLUSIONS: It is found that the heat accumulator of phase transition with high-density polyethylene as a heat-accumulating material can be used for improving the reliability of vehicles’ piston engine start in conditions of negative temperatures of cold climate.

About the authors

Alexander V. Kolunin

Moscow Polytechnic University

Author for correspondence.
Email: kolunin2003@mail.ru
ORCID iD: 0000-0001-7151-8489
SPIN-code: 7483-9619

Associate Professor, Cand. Sci. (Engineering), Associate Professor of the Power Plants for Transport and Small Energy Department

Russian Federation, 38 Bolshaya Semenovskaya street, 107023 Moscow

Valery N. Kaminsky

Moscow Polytechnic University

Email: kamr@mail.ru
ORCID iD: 0000-0002-5430-4304
SPIN-code: 8509-5210

Dr. Sci. (Engineering), Professor of the Power Plants for Transport and Small Energy Department

Russian Federation, 38 Bolshaya Semenovskaya street, 107023 Moscow

Dmitry V. Apelinsky

Moscow Polytechnic University

Email: apelinskiy_mami@mail.ru
ORCID iD: 0000-0003-2841-6895
SPIN-code: 2311-0480

Associate Professor, Cand. Sci. (Engineering), Associate Professor of the Power Plants for Transport and Small Energy Department

Russian Federation, 38 Bolshaya Semenovskaya street, 107023 Moscow

Evgeny S. Lazarev

Omsk State Transport University

Email: incoe@yandex.ru
ORCID iD: 0000-0002-0226-3678
SPIN-code: 7069-0551

Senior Lecturer of the Heat Power and Thermal Engineering Department

Russian Federation, Omsk

Mikhail S. Korytov

Siberian State Automobile and Highway University

Email: kms142@mail.ru
ORCID iD: 0000-0002-5104-7568
SPIN-code: 2921-4760

Professor of the Department of Automobile Transport, Doctor of Technical Sciences, Associate Professor

Russian Federation, 5 Mira Avenue, 644080, Omsk

References

  1. Kolunin AV. Vliyanie nizkikh temperatur okruzhayushchey sredy na periodichnost tekhnicheskogo obsluzhivaniya silovykh ustanovok dorozhnykh i stroitelnykh mashin [dissertation] Omsk; 2006. EDN: NOLQPP
  2. Kolunin AV, Materi IV, Derevskov NYu. Obzor sredstv obespecheniya puska dizelnykh dvigateley v usloviyakh otritsatelnykh temperature. Strategicheskaya stabilnost. 2021;4(97):34–38. EDN: KHYBCW
  3. Seledkin AA, Malozemov AA. Otsenka puskovykh kharakteristik dizeley tipa 4ch13/14 i chn13/14 v usloviyakh nizkikh temperatur okruzhayushchego vozdukha. In: Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Problemy ekspluatatsii i obsluzhivaniya transportno-tekhnologicheskikh mashin». Tyumen. 08 aprelya 2009. Tyumen; 2009:305–310.
  4. Seledkin AA, Malozemov AA, Gertsev VV. Effektivnost meropriyatiy po uluchsheniyu puskovykh kharakteristik dizeley razmernostyu 13/14. Nauchnye problemy transporta Sibiri i dalnego vostoka. 2009;2:220–223. EDN: LPWZHJ
  5. Romanov DV, Kukis VS, Malozemov AA. Uluchshenie puskovykh kachestv dizeley razmernostyu 13/14. Nauchnye problemy transporta Sibiri i Dalnego Vostoka. 2011;1:211–214. EDN: LPWZHJ
  6. Kolunin AV, Altukhov YaV, Terzi DV, et al. Teplovoy akkumulyator kak sredstvo povysheniya puskovoy nadezhnosti porshnevykh dvigateley v usloviyakh otritsatelnykh temperatur. In: Sbornik materialov 9 mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Tekhnika i tekhnologiya neftekhimicheskogo i neftegazovogo proizvodstva» 2019. Omsk: OmGTU; 2019:179–180.
  7. Patent RUS 2052734 / 20.01.1996. Byul. №2. Alekseev GL, Borisov SYu, Alekseev GL, et al. Akkumulyator teploty. [cited: 08.10.2023] Available from: https://elibrary.ru/download/elibrary_38026453_11655862.pdf EDN: VMTDIY
  8. Patent RUS 2755235 / 14.09.2021. Byul. № 26. Shabalin DV, Terzi DV, Altukhov YaV, et al. Sposob i ustroystvo predpuskovoy podgotovki dvigatelya vnutrennego sgoraniya. [cited: 08.10.2023] Available from: https://elibrary.ru/download/elibrary_46606177_39024178.PDF EDN: DZJMMC
  9. Terzi DV. Induktsionnaya podderzhka rabotosposobnosti teplovogo akkumulyatora dvigatelya v usloviyakh otritsatelnykh temperature. Vestnik grazhdanskikh inzhenerov. 2019;4(75):145–150. EDN: BTTDKT doi: 10.23968/1999-5571-2019-16-4-145-150
  10. Terzi DV, Altukhov YaV. Ispolzovanie printsipa akkumulirovaniya energii dlya nadezhnogo puska dvigatelya v usloviyakh otritsatelnykh temperatur okruzhayushchey sredy. In: Materialy II Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Dinamika razvitiya sistemy voennogo obrazovaniya». Omsk: OGTU; 2020:133–141. EDN: ZYNSHK
  11. Terzi DV, Altukhov YaV, Materi IV. Teplovoy akkumulyator fazovogo perekhoda kak sredstvo uluchsheniya puskovykh kharakteristik dvigateley v usloviyakh otritsatelnykh temperature. Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskie sredstva protivodeystviya terrorizmu. 2020;5–6(143–144):92–98. EDN: MJNGCI

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The heat accumulator of phase transition in longitudinal section: 1 — an outer housing; 2 — heat isolation; 3 — an inner housing; 4 — metal cylindrical capsules with a heat-accumulating material; 5 — coolant path gaps; 6 — an inlet; 7 — an outlet.

Download (426KB)
3. Fig. 2. Diagram of the experimental facility: 1 — an initial coolant temperature adjuster; 2 — a heating-cooling element; 3 — a supercharger; 4 — a thermal couple; 5 — an electric engine; 6 — a variable resistance element; 7 — an automatic control system of the heating-cooling element; 8 — a heat accumulator; 9 — thermal couples; 10 — the UGI Meters G4 gas flowmeter.

Download (169KB)
4. Fig. 4.

Download (281KB)
5. Fig. 3. Curves of heat accumulator charging period depending on the heat-accumulating material temperature at various coolant initial temperatures.

Download (152KB)
6. Fig. 4. Curves of heat accumulator discharging period depending on heat-accumulating material temperature at various coolant rates.

Download (147KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».