Optimization of the main parameters of the diesel engine during its operation on the multicomponent biofuel composition

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: When conducting experimental studies aimed at finding optimal parameters of the diesel engine operating mode, as well as other objects, the issue of reducing the volume of the experiment becomes acute. The use of modern methods of planning, obtaining, processing and analyzing experimental data allows to reduce significantly the number of experiments conducted without notable loss of the reliability of the data obtained.

AIMS: The aim of this study is to determine the optimal operating characteristics of the diesel engine, which uses the multi-component bio-fuel composition.

METHODS: In order to determine the optimal values of the main parameters, affecting the effective indicators of the 4ChN 11.0/12.5 diesel engine when operating on the multicomponent biofuel composition and a mathematical description of their relationship, a second-order three-factor Box – Benken plan was implemented. These factors are effective load, crankshaft rotational speed, and fuel injection advance angle. The diesel engine operation studies were performed on the most stable mixture of the multicomponent biofuel composition, including the following ingredients, wt %: rapeseed oil – 34.5; ethanol – 31.0; diesel fuel – 34.5. The search of a compromise solution for the optimal combination of the levels of studied factors was performed with the method of superimposing of bidimensional sections of the response surfaces of the effective efficiency factor and the specific effective fuel consumption.

RESULTS: Adequate models of second-order regression analysis of changes in effective efficiency factor and specific effective fuel consumption have been obtained. The factor space is described and grapho-analytical studies are carried out. The analysis of regression models and bidimensional sections of response surfaces allowed to determine the optimal values of the studied factors. The method for determining the optimal load and speed ranges of the diesel engine operation, using the multicomponent biofuel composition, has been optimized due to the application of the experimental plan and the description of the factor space by mathematical models, while number of experiments was reduced.

CONCLUSIONS: The optimal area of the combination of the factors is in the range of varying the rotational speed of the diesel engine crankshaft n=1400...1550 rpm and the effective load Pe=0.68...0.85 MPa at the fuel injection advance angle Ѳinj=23.5 degrees to TDC. Considering the variable nature of the load and speed modes of a diesel engine in a real operation environment, the obtained data are of practical interest.

About the authors

Sergey A. Plotnikov

Vyatka State University

Author for correspondence.
Email: PlotnikovSA@bk.ru
ORCID iD: 0000-0002-8887-4591
SPIN-code: 4899-9362
ResearcherId: R-8491-2016

Associate Professor, Dr. Sci. (Engin.), Professor of the Mechanical Engineering Technology Department

Russian Federation, 36 Moskovskaya Str., Kirov, 610000

Anatoliy N. Kartashevich

Belarusian State Agricultural Academy

Email: Kartashevich@yandex.ru
ORCID iD: 0000-0002-3649-1521
SPIN-code: 8541-5330

Dr. Sci. (Engin.), Professor, Head of the Tractors, Vehicles and Machines for Environmental Management Department

Belarus, Gorki

Maksim V. Simonov

Vyatka State University

Email: simaksim@mail.ru
ORCID iD: 0000-0003-3805-9246
SPIN-code: 1216-7568
ResearcherId: F-7895-2018

Associate Professor, Dr. Sci. (Engin.), Associate Professor of the Mechanical Engineering Technology Department

Russian Federation, Kirov

Alexandr I. Shipin

Vyatka State University

Email: shipin95@gmail.com
ORCID iD: 0000-0002-9678-9389
SPIN-code: 2676-6575

Postgraduate of the Mechanical Engineering Technology Department

Russian Federation, Kirov

References

  1. Plotnikov SA. Uluchshenie ekspluatatsionnykh pokazatelei dizelei putem sozdaniya novykh al’ternativnykh topliv i sovershenstvovaniya toplivopodayushchei apparatury. [dissertation]. Nizhnii Novgorod: 2011. Rezhim dostupa: http://www.dslib.net/teplo-dvigateli/uluchshenie-jekspluatacionnyh-pokazatelej-dizelej-putem-sozdanija-novyh.html (In Russ).
  2. Plotnikov SA, Smol’nikov MV, Cheremisinov PA. The extension of multi-fuel capacity of automotive diesel engine using alternative fuels. Izvestiya MGTU «MAMI». 2019;(3):66–72. (In Russ).
  3. L’otko V, Lukanin VN, Khachiyan AS. Primenenie al’ternativnykh topliv v dvigatelyakh vnutrennego sgoraniya. Moscow: Izd-vo MADI (TU); 2000. (In Russ).
  4. Plotnikov SA, Kartashevich AN, Cheremisinov PN. Uluchshenie smesei dizel‘nogo topliva s rapsovym maslom dlya ispol‘zovaniya v traktornykh dizelyakh. Dvigatelestroenie. 2017;(4):21–24. (In Russ).
  5. Markov VA, Devyanin SN, Zykov SA, Gaidar SM. Biotopliva dlya dvigatelei vnutrennego sgoraniya. Moscow: NITs «Inzhener»; 2016. (In Russ).
  6. Terent’ev GA, Tyukov VM, Smal’ FV. Motornye topliva iz al’ternativnykh syr’evykh resursov. Moscow: Khimiya, 1989. (In Russ).
  7. Patent RUS № 2020123967/ 29.07.2020. Plotnikov SA, Glushkov MN, Kartashevich AN, Shaporev VA. Mnogokomponentnaya biotoplivnaya kompozitsiya. Available from: https://elibrary.ru/item.asp?id=46477534 (In Russ).
  8. Patent RUS № 2020120544/ 22.06.2020. Plotnikov SA, Shipin AI, Kartashevich AN, Malyshkin PYu. Sposob polucheniya mnogokomponentnoi biotoplivnoi kompozitsii. Available from: https://elibrary.ru/item.asp?id=44759434 (In Russ).
  9. Plotnikov SA, Kartashevich AN, Simonov MV, Glushkov MN. Determining of optimum operation modes of a diesel engine with a multicomponent biofuel composition. IOP Conference Series: Materials Science and Engineering. 2021;1086(1). doi: 10.1088/1757-899x/1086/1/012014
  10. Koshevoi ND, Burleev OL, Kostenko EM. Optimal‘noe planirovanie eksperimenta s vvedeniem ogranicheniya po dopolnitel‘nomu kriteriyu. Vestnik SumDU. 2010;2:63-67. (In Russ).
  11. Denisenko VV. Modelirovanie razbrosa parametrov tranzistorov v KMOP SBIS. Komponenty i tekhnologii. 2004;(1):28–34.
  12. Al Qadi ANS, Alhasanat MBA, Dahamsheh AAL, Zaiydneen SAL. Using of Box-Benken Method to Predict the Compressive Strength of Self-Compacting Concrete Containing Wadi Musa Bentonite, Jordan. American Journal of Engineering and Applied Sciences. 2016;9(2):406-411. doi: 10.3844/ajeassp.2016.406.411
  13. Avramović JM, Radosavljević DB, Veličković AV, et al. Statistical modeling and optimization of ultrasound-assisted biodiesel production using various experimental designs. Zastita Materijala. 2019;60(1):70-80. doi: 10.5937/zasmat1901070A
  14. Leuca T, Novac M, Stanciu B, et al. Using Minitab-Box Benken Software to Optimize the Induction Heating Process. Journal of Electrical and Electronics Engineering. 2014;7(1):73–76.
  15. Jovanovic J, Stefanovic A, Sekuljica N, Knezevic-Jugovic Z. Production of wheat gluten hydrolysates with improved functional properties: optimization of operating parameters by statistical design // Journal of Hygienic Engineering and Design. 2018;24:90–100.
  16. Agaba AM, Oluchukwu AC, Ezenwa OS. Optimization and Kinetic Modeling of the Removal of Lead from Enugu Coal by Acid Leaching. Journal of Energy Research and Reviews. 2019:1–13. doi: 10.9734/jenrr/2019/v3i130090
  17. GOST R 50.1.040−2002. Statisticheskie metody. Planirovanie eksperimentov. Terminy i opredeleniya. Available from: https://docs.cntd.ru/document/1200030727 (In Russ).
  18. Grachev YuP. Matematicheskie metody planirovaniya eksperimentov. Moscow: Pishchevaya promyshlennost’; 1979. (In Russ).
  19. Mel’nikov SV, Aleshkin VR, Roshchin PM. Planirovanie eksperimenta v issledovaniyakh sel’skokhozyaistvennykh protsessov. Leningrad: Kolos; 1980. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig 1. General view of the equipment and devices used: a – control panel of a diesel engine; b – The D-245 diesel engine mounted on the test bench.

Download (297KB)
3. Fig. 2. Bidimensional sections of response surfaces at the fuel injection advance angle Ѳinj=23.5 deg: a – specific effective fuel consumption ge; b – effective efficiency ηe.

Download (216KB)
4. Fig. 3. Dependencies on effective load Pe and crankshaft rotation speed n at the fuel injection advance angle Ѳinj=23.5 deg.: a – of effective efficiency ηe; b – of specific effective fuel consumption

Download (251KB)
5. Fig. 4. Bidimensional sections of response surfaces of the effective efficiency ηe (solid lines) and the specific effective fuel consumption ge (dashed lines) at the fuel injection advance angle Ѳinj=23.5 deg.

Download (89KB)

Copyright (c) 2022 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies