Roughness Parameter of Shallow Water Bodies

封面
  • 作者: Repina I.1,2,3, Artamonov A.4, Kapustin I.5, Mol’kov A.5, Stepanenko V.6,7,8
  • 隶属关系:
    1. Obukhov Institute of Atmospheric Physics, RAS
    2. Lomonosov Moscow State University, Research Computing Center
    3. Moscow Center for Fundamental and Applied Mathematics
    4. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, 119017, Moscow, Russia
    5. Institute of Applied Physics, Russian Academy of Sciences
    6. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
    7. Moscow State University, Faculty of Geography
    8. Moscow State University, Research Computing Center
  • 期: 卷 50, 编号 5 (2023)
  • 页面: 602-612
  • 栏目: ИССЛЕДОВАНИЯ ПРОЦЕССОВ ВЗАИМОДЕЙСТВИЯ СУШИ С АТМОСФЕРОЙ И ГИДРОЛОГИЧЕСКИХ ПОСЛЕДСТВИЙ ИЗМЕНЕНИЯ КЛИМАТА
  • URL: https://journals.rcsi.science/0321-0596/article/view/140801
  • DOI: https://doi.org/10.31857/S032105962360014X
  • EDN: https://elibrary.ru/KVMNHC
  • ID: 140801

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of measurements of atmospheric turbulence characteristics were used to obtain parameterizations for calculating the dynamic roughness parameter and the roughness parameters for temperature and humidity for a shallow closed water body. At medium wind speeds, the results of calculations by Charnock formula are in agreement with observation data; in this case, the c parameter is three times as large as that in the case of an open ocean, and the passage from the viscous to wave mechanism occurs at high wind speeds, while the dynamic roughness parameter at the same wind speeds is greater. The roughness parameters for temperature and humidity at wind speed from 0.5 to 3 m/s are not equal. The empirical coefficients in the equations describing the ratio of the dynamic roughness to the roughness parameter for temperature (humidity) on Reynolds number are close to those obtained before for other closed water bodies, thus suggesting a common formation mechanism of transport processes in a viscous sublayer. The obtained parameterizations can be used in Earth system models and lake models for calculating turbulent flows over continental water bodies.

作者简介

I. Repina

Obukhov Institute of Atmospheric Physics, RAS; Lomonosov Moscow State University, Research Computing Center; Moscow Center for Fundamental and Applied Mathematics

Email: repina@ifaran.ru
Russia, 119017, Moscow, Pyzhevsky, 3; Russia, 119234, Moscow, ul. Leninskie Gory, 1, bild. 4; Russia, 119234, Moscow, ul. Leninskie Gory, 1, bild. 1

A. Artamonov

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, 119017, Moscow, Russia

Email: repina@ifaran.ru
Россия, 119017, Москва

I. Kapustin

Institute of Applied Physics, Russian Academy of Sciences

Email: repina@ifaran.ru
Russia, Nizhny Novgorod

A. Mol’kov

Institute of Applied Physics, Russian Academy of Sciences

Email: repina@ifaran.ru
Russia, Nizhny Novgorod

V. Stepanenko

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Moscow State University, Faculty of Geography; Moscow State University, Research Computing Center

编辑信件的主要联系方式.
Email: repina@ifaran.ru
Russia, Moscow; Russia, Moscow; Russia, Moscow

参考

  1. Зилитинкевич С.С. Динамика пограничного слоя атмосферы / Под ред. А.С. Монина. Л.: Гидрометиздат, 1970. 292 с.
  2. Кривицкий С.В., Стекалов С.С. О параметре шероховатости поверхности мелководных водоемов // Изв. АН СССР. Физика атмосферы и океана. 1988. Т. 24. № 1. С. 103−106.
  3. Мольков А.А., Капустин И.А., Ермаков С.А., Сергиевская И.А., Шомина О.В., Лазарева Т.Н., Лещев Г.В. Гидрофизическая лаборатория ИПФ РАН “Геофизик” как эффективный инструмент лимнологического мониторинга // Научные проблемы оздоровления российских рек и пути их решения. 2019. С. 214−218.
  4. Монин А.С., Обухов А.М. Основные закономерности турбулентного перемешивания в приземном слое атмосферы // Тр. Геофиз. инст. АН СССР. 1954. № 24 (151). С. 163−187.
  5. Репина И.А. Исследование динамических характеристик и температурного режима вод поверхности в Каспийском море // Метеорология и Гидрология. 2000. № 10. С. 15−27.
  6. Степаненко В.М., Репина И.А., Федосов В.Э., Зилитинкевич С.С., Лыкосов В.Н. Обзор методов параметризации теплообмена в моховом покрове для моделей Земной системы // Изв. РАН. Физика атмосферы и океана. 2020. Т. 56. № 2. С. 127−138.
  7. Anctil F., Donelan M. Air-water momentum flux observations over shoaling waves // J. Phys. Oceanogr. 1996. V. 26. P. 1344–1354.
  8. Andreas E.L., Emanuel K.A. Effects of sea spray on tropical cyclone intensity // J. Atmos. Sci. 2001. V. 58 (24). V. 3741−3751.
  9. Andreas E.L., Horst T.W., Grachev A.A., Persson P.O.G., Fairall C.W., Guest P.S., Jordan R.E. Parametrizing turbulent exchange over summer sea ice and the marginal ice zone // Quarterly J. Royal Meteorol. Soc. 2010. V. 136 (649). P. 927–943.
  10. Andreas E.L., Jordan R.E., Makshtas A.P. Parameterizing turbulent exchange over sea ice: the ice station Weddell results // Bound. Layer Meteorol. 2005. V. 114 (2). P. 439–460.
  11. Andreas E.L., Persson P.O.G., Grachev A.A., Jordan R.E., Horst T.W., Guest P.S., Fairall C.W. Parameterizing turbulent exchange over sea ice in winter // J. Hydrometeorol. 2010. V. 11 (1). P. 87–104.
  12. Artamonov A.Yu., Buchnev I.A., Repina I.A., Skirta A.Yu., Smirniov A.S., Tolpygin L.I. Turbulent Fluxes of Heat and Momentum and Statistical Characteristics of Turbulence in the Near-Surface Air in Near-Shore and Deep-Water Zones of the Black Sea // Oceanology. 2005. V. 45. Suppl. 1. P. S27–S38.
  13. Ataktürk S.S., Katsaros K.B. Wind stress and surface waves observed on Lake Washington // J. Phys. Oceanogr. 1999. V. 29 (4). P. 633–650.
  14. Brutsaert W. Evaporation into the atmosphere: theory, history and applications. Dordrecht: Springer Sci. Business Media, 2013. 237 p.
  15. Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: a Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. Lincoln: LI-COR Biosci., 2013. 331 p.
  16. Businger J.A., Wyngaard J.C., Bradley E.F. Flux profile relationships in the atmospheric surface layer // J. Atmos. Sci. 1971. V. 28. P. 181−189.
  17. Charnock H. A note on empirical wind-wave formulae // Quarterly J. Royal Meteorol. Soc. 1958. V. 84. P. 443–447.
  18. Charnock H. Wind stress on water surface // Quarterly J. Royal Meteorol. Soc. 1955. V. 81. P. 639−640.
  19. Diallo I., Giorgi F., Stordal F. Influence of Lake Malawi on regional climate from a double‑nested regional climate model experiment // Climate Dynamics. 2018. V. 50 (9–10). P. 3397–3411.
  20. Dias N.L., Vissotto D. The effect of temperature-humidity similarity on Bowen ratios, dimensionless standard deviations, and mass transfer coefficients over a lake // Hydrol. Process. 2017. V. 31. P. 256–269.
  21. Donelan M.A., Haus B.K., Reul N., Plant W.J., Stiassnie M., Graber H.C., Brown O.B., Saltzman E.S. On the limiting aerodynamic roughness of the ocean in very strong winds // Geophys. Res. Lett. 2004. V. 31. L18306.
  22. Drennan W.M., Graber H.C., Hauser D., Quentin C. On the wave age dependence of wind stress over pure wind seas // J. Geophys. Res. 2003. V. 108. P. 8062.
  23. Dyer A.J. A review of flux-profile relationships // Boundary-Layer Meteorol. 1974. V. 7. P. 363–372.
  24. Fairall C.W., Bradley E.F., Hare J.E., Grachev A.A., Edson J.B. Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm // J. Climate. 2003. V. 16. № 4. P. 571–591.
  25. Fairall C.W., Bradley E.F., Rogers D.P., Edson J.B., Young G.S. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment // J. Geophys. Res.: Oceans. 1996. V. 101 (C2). P. 3747–3764.
  26. Fisher A.W., Sanford L.P., Suttles S.E. Wind Stress Dynamics in Chesapeake Bay: Spatiotemporal Variability and Wave Dependence in a Fetch-Limited Environment // J. Phys. Oceanogr. 2015. V. 45. P. 2679–2696.
  27. Foken T. 50 years of the Monin-Obukhov similarity theory // Bound. Layer Meteorol. 2006. V. 119. P. 431–447.
  28. Foken T., Göockede M., Mauder M. Post-field data quality control. Handbook of micrometeorology // Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis / Eds X. Lee, W.J. Massman, B. Law. Dordrecht: Kluwer Acad. Publ., 2004. P. 181–208.
  29. Garratt J. Review of drag coefficients over oceans and continents // Mon. Wea. Rev. 1977. V. 105. P 915–929.
  30. Garratt J.R. The Atmospheric Boundary Layer. Cambridge, UK: Cambridge Univ. Press, 1997. 316 p.
  31. Gerken T., Biermann T., Babel W., Herzog M., Ma Y., Foken T., Graf H.-F. A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau // Theor. A-ppl. Climatol. 2014. V. 117 (1–2). P. 149–167.
  32. Grachev A.A., Bariteau L., Fairall C.W., Hare J.E., Helmig D., Hueber J., Lang E.K. Turbulent fluxes and transfer of trace gases from shipbased measurements during TexAQS 2006 // J. Geophys. Res. 2011. V. 116. P. D13110.
  33. Grachev A.A., Fairall C.W., Larsen S.E. On the determination of the neutral drag coefficient in the convective boundary layer // Boundary-Layer Meteorol. 1998. V. 86. P. 257−278.
  34. Heikinheimo M., Kangas M., Tourula T., Venäläinen A., Tattari S. Momentum and heat fluxes over lakes Tämnaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods // Agr. Forest Meteorol. 1999. V. 98. P. 521–534.
  35. Hicks B.B. Some evaluations of drag and bulk transfer coefficients over water bodies of different sizes // Bound. Layer Meteorol. 1972. V. 3 (2). P. 201–213.
  36. Högström U. Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation // Bound. Layer Meteorol. 1988. V. 42. P. 55–78.
  37. Huang C.H. Modification of the Charnock Wind Stress Formula to Include the Effects of Free Convection and Swell // Advanced Methods for Practical Applications in Fluid Mechanics / Ed. J. Steven. London: InTech, 2012. P. 47−69.
  38. Istvánovics V., Honti M. Coupled simulation of high frequency dynamics of dissolved oxygen and chlorophyll widens the scope of lake metabolism studies // Limnol. Oceanogr. 2018. V. 63. P. 72−90.
  39. Johnson H.K., Højstrup J., Vested H.J., Larsen S.E. On the dependence of sea surface roughness on wind waves // J. Phys. Oceanogr. 1998. V. 28. P. 1702−1716.
  40. Kitaigorodskii S.S., Volkov Yu.A., Grachev A.A. A note on the analogy between momentum transfer across a rough solid surface and the air-sea interface // Boundary-Layer Meteorol. 1995. V. 74. P. 1−17.
  41. Kormann R., Meixner F.X. An Analytical Footprint Model For Non-Neutral Stratification // Boundary-Layer Meteorol. 2001. V. 99 (2). P. 207–224.
  42. Langleben M.P. A study of the roughness parameters of sea ice from wind profiles // J. Geophys. Res. 1972. V. 77. № 30. P. 5935–5944.
  43. Li D., Rigden A., Salvucci G., Liu H. Reconciling the Reynolds number dependence of scalar roughness length and laminar resistance // Geophys. Res. Lett. 2017. V. 44. № 7. P. 3193–3200.
  44. Li Z., Lyu S., Zhao L., Wen L., Ao Y., Wang S. Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan Plateau // Theoretical Applied Climatol. 2016. V. 124. № 3. P. 723−735.
  45. Liu W.T., Katsaros K.B., Businger J.A. Bulk parameterization of air-sea exchange of heat and water vapor including the molecular constraints at the interface // J. Atmos. Sci. 1979. V. 36. P. 1722–1735.
  46. Long Z., Perrie W., Gyakum J., Caya D., Laprise R. Northern lake impacts on local seasonal climate // J. Hydrometeorol. 2007. V. 8 (4). P. 881–896.
  47. Mahrt L., Vickers D., Frederickson P., Davidson K., Smedman A.S. Sea-surface aerodynamic roughness // J. Geophys. Res. 2003. V. 108 (C6). P. 3171.
  48. Mahrt L., Vickers D., Sun J., Jensen N.O., Jørgensen H., Pardyjak E., Fernando H. Determination of the surface drag coefficient // Bound. Layer Meteorol. 2000. V. 99 (2). P. 249–276.
  49. Moat B.I., Yelland M.J., Pascal R.W. Quantifying the airflow distortion over merchant ships. Part 1: Validation of a CFD model // J. Atmos. Oceanic Technol. 2006. V. 23. P. 341−350.
  50. Moncrieff J.B., Clement R., Finnigan J., Meyers T. Averaging detrending and filtering of eddy covariance time series // Handbook of Micrometeorology: A Guide for Surface Flux Measurements / Eds X. Lee, W.J. Massman, B.E. Law. Dordrecht: Kluwer Acad., 2004. P. 7–31.
  51. Olabarrieta M., Warner J.C., Armstrong B., Zambon J.B., He R. Ocean-atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean–atmosphere–wave sediment transport (COAWST) modeling system // Ocean Model. 2012. V. 43–44. P. 112–137.
  52. Panin G.N., Nasonov A.E., Foken T., Lohse H. On the parametersisaton of evaporation and sensible heat exchange for shallow lakes // Theor. Appl. Climatol. 2006. P. 85 (3–4). P. 123–129.
  53. Paulson C.A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer // J. Appl. Meteorol. 1970. V. 9. P. 857–861.
  54. Repina I., Artamonov A., Chukharev A., Esau I., Goryachkin Y., Kuzmin A., Pospelov M., Sadovsky I., Smirnov M. Air-sea interaction under low and moderate winds in the black sea coastal // Estonian J. Engineering. 2012. V. 18. № 2. P. 89−101.
  55. Shabani B., Nielsen P., Baldock T. Direct measurements of wind stress over the surf zone // J. Geophys. Res. 2014. V. 119. P. 2949–2973.
  56. Sharma A., Hamlet A.F., Fernando H.J.S., Catlett C.E., Horton D.E., Kotamarthi V.R. et al. The need for an integrated land‑lake‑atmosphere modeling system, exemplified by North America’s Great Lakes region // Earth’s Future. 2018. V. 6. P. 1366–1379.
  57. Smith S. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature // J. Geophys. Res-Oceans. 1988. V. 93 (C12). P. 15 467–15 472.
  58. Smith S.D., Anderson R.J., Oost W.A., Kraan C., Maat N., De Cosmo J., Katsaros K.B., Davidson K.L., Bumke K., Hasse L., Chadwick H.M. Wind Stress and Drag Coefficients // Bound.-Lay. Meteorol. 1992. V. 60. P. 109–142.
  59. Solheid B., Dias N., Armani F., Junior D.V. Evaluation of alternatives for parameterization of momentum and water vapor roughness lengths in lakes // Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 2020. V. 36. № 2. P. 1−11.
  60. Soloviev A., Lukas R. The near-surface layer of the ocean: structure, dynamics and applications // Springer Sci. Business Media. 2013. V. 48. 551 p.
  61. Stepanenko V.M., Repina I.A., Artamonov A.Y., Gorin S.L., Lykossov V.N., Kulyamin D.V. Mid-depth temperature maximum in an estuarine lake // Environ. Res. Lett. 2018. V. 13. № 3. P. 035006.
  62. Subin Z.M., Riley W.J., Mironov D. An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1 // J. Adv. Model Earth Syst. 2012. V. 4. P. M02001.
  63. Toba Y., Koga M. A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress // Oceanic whitecaps / Ed. Y. Toba. Amsterdam: Springer Netherlands, 1986. P. 37−47.
  64. Torma P., Krámer T. Modeling the Effect of Waves on the Diurnal Temperature Stratification of a Shallow Lake // Period. Polytech. Civ. Eng. 2017. V. 61. P. 165–175.
  65. Van Dijk A., Moene A.F., de Bruin H.A.R. The Principles of Surface Flux Physics: Theory, Practice and Description of the ECPack Library. Wageningen: Wageningen Univ., 2004. 99 p.
  66. Varentsov A.I., Zilitinkevich S.S., Stepanenko V.M., Tyuryakov S.A., Alekseychik P.K. Thermal Roughness of the Fen Surface // Boundary-Layer Meteorol. 2022. P. 1−15.
  67. Verburg P., Antenucci J.P. Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika // J. Geophys. Res. 2010. V. 115 (D11). P. D11109.
  68. Vickers D., Mahrt L. Sea-surface roughness lengths in the midlatitude coastal zone // Quarterly J. Royal Meteorol. Soc. 2010. V. 136 (649). P. 1089–1093.
  69. Vickers D., Mahrt L. Quality control and flux sampling problems for tower and aircraft data // J. Atmos. Ocean. Technol. 1997. V. 14. P. 512–526
  70. Wang B., Ma Y. On the simulation of sensible heat flux over the Tibetan Plateau using different thermal roughness length parameterization schemes // Theoretical and Applied Climatol. 2019. V. 137. № 3. P. 1883−1893.
  71. Wang B., Ma Y., Chen X., Ma W., Su Z., Menenti M. Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau // J. Geophys. Res.: Atmosph. 2015. V. 120 (24). P. 12327–12344.
  72. Wang B., Ma Y., Wang Y., Su Z., Ma W. Significant differences exist in lake-atmosphere interactions and the evaporation rates of high-elevation small and large lakes // J. Hydrol. 2019. V. 573. P. 220−234.
  73. Webb E.K., Pearman G.I., Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer // Quarterly J. Royal Soc. 1980. V. 106. P. 85–100.
  74. Webster P.J., Lukas R. TOGA COARE: The Coupled Ocean—Atmosphere Response Experiment // Bull. Am. Meteorol. Soc. 1992. V. 73 (9). V. 1377–1416.
  75. Wu J. The sea surface is aerodynamically rough even under light winds // Bound.-Layer Meteorol. 1994. V. 69 (1–2). P. 149–158.
  76. Wu J. Wind-stress coefficients over sea surface near neutral conditions—a revisit // J. Phys. Oceanogr. 1980. V. 10. P. 727–740.
  77. Wüest A., Lorke A. Small scale hydrodynamics in lakes // Annu. Rev. Fluid. Mech. 2003. V. 35. P. 373–412.
  78. Yang K., Koike T., Ishikawa H., Kim J., Li X., Liu H., Wang J. Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization // J. Appl. Met. Clim. 2008. V. 47 (1). P. 276–290.
  79. Zilitinkevich S., Grachev A., Fairall C. Scaling reasoning and field data on the sea-surface roughness lengths for scalars // J. Atmos. Sci. 2001. V. 58. P. 320–325.
  80. Zilitinkevich S.S., Mammarella I., Baklanov A.A., Joffre S.M. The effect of stratification on the roughness length and displacement height // Boundary-Layer Meteorol. 2008. V. 129. P. 179−190.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (33KB)
3.

下载 (60KB)
4.

下载 (86KB)

版权所有 © И.А. Репина, А.Ю. Артамонов, И.А. Капустин, А.А. Мольков, В.М. Степаненко, 2023

##common.cookie##