Evaluating Inundation Characteristics under Climate Changes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A procedure of hydrodynamic modeling of floodplain inundation characteristics is presented; the procedure takes into account climate change scenarios and is based on the results of numerical experiments with river runoff formation model and the results of ensemble calculations by global climate models. The model calculations were based on Russian software systems ECOMAG and STREAM_2D. For the key segment of the Lena at Yakutsk C. (Tabaga gage), the calculations by all scenarios and models show a possible increase in the runoff by the mid-XXI century along with an increase in the inundation areas and depths by 9–15% due to the increase in runoff.

作者简介

I. Krylenko

Faculty of Geography, Moscow State University, 119991, Moscow, Russia; Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

编辑信件的主要联系方式.
Email: krylenko_i@mail.ru
Россия, 119991, Москва; Россия, 119333, Москва

参考

  1. Беликов В.В., Алексюк А.И. Модели мелкой воды в задачах речной гидродинамики. М.: РАН, 2020. 346 с.
  2. Гельфан А.Н., Фролова Н.Л., Магрицкий Д.В., Киреева М.Б., Григорьев В.Ю., Мотовилов Ю.Г., Гусев Е.М. Влияние изменения климата на годовой и максимальный сток рек России: оценка и прогноз // Фундаментал. и приклад. климатология. 2021. Т. 7. № 1. С. 36–79.
  3. Корнилова Е.Д., Крыленко И.Н., Головлев П.П., Сазонов А.А., Никитский А.Н. Верификация двумерной гидродинамической модели р. Лены у г. Якутск по разновременным данным космической съемки // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 15. № 5. С. 169–178 https://doi.org/10.21046/2070-7401-2018-15-5-169-178
  4. Мотовилов Ю.Г., Гельфан А.Н. Модели формирования стока в задачах гидрологии речных бассейнов. М.: РАН, 2018. 300 с.
  5. Aleksyuk A.I., Belikov V.V. The uniqueness of the exact solution of the Riemann problem for the shallow water equations with discontinuous bottom // J. Computational Physics. 2019. V. 390. P. 232–248. https://doi.org/10.1016/j.jcp.2019.04.001
  6. Gelfan A., Kalugin A., Krylenko I., Nasonova O., Gusev Y., Kovalev E. Does a successful comprehensive evaluation increase confidence in a hydrological model intended for climate impact assessment? // Climatic Change. 2020. V. 163. P. 1165–1185. https://doi.org/10.1007/s10584-020-02930-z
  7. Golovlyov P., Kornilova E., Krylenko I., Belikov V., Zavadskii A., Fingert E., Borisova N., Morozova E. Numerical modeling and forecast of channel changes on the river Lena near city Yakutsk // Proc. Int. Association Hydrol. Sci. 2019. V. 381. P. 65–71. https://doi.org/10.5194/piahs-381-65-2019
  8. Motovilov Y., Gottschalk L., Engeland K., Rodhe A. Validation of a distributed hydrological model against spatial observations // Agric. For. Meteorol. 1999. V. 98–99. P. 257–277. https://doi.org/10.1016/S0168-1923(99)00102-1
  9. Taylor K.E., Stouffer R.J., Meehl G.A. An overview of CMIP5 and the experiment design. // Bull. Am. Meteor. Soc. 2012. V. 93. P. 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
  10. Weedon G.P., Balsamo G., Bellouin N., Gomes S., Best M.J., Viterbo P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. // Water Resour. Res. 2014. № 50. P. 7505–7514. https://doi.org/1010.1002/2014WR015638

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (445KB)
4.

下载 (108KB)

版权所有 © И.Н. Крыленко, 2023

##common.cookie##