Simulating Runoff Regime in a Glaciated High-Mountainous Basin: A Case Study of the Baksan River (Caucasus, Russia)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The water resources of the North Caucasus depend mostly on the state of glaciers, which have been intensely losing their mass in the recent decades against the background of climate changes. The deglaciation leads not only to a decrease in the glacier runoff of mountain rivers, but also to changes in the annual distribution of runoff. The focus of this study is the adaptation of ECOMAG software complex to simulating river runoff in the Baksan River basin based on data on the relief and underlying surface of the drainage basin (soil, vegetation) and daily data on the surface air temperature, air saturation deficit, and precipitation. The calibration and validation of the model and the statistical estimate of calculation efficiency were based on the data on water discharges in the Baksan River over 2000–2017. The developed model of runoff formation in the Baksan River basin was used to carry out numerical experiments for assessing the sensitivity of runoff characteristics to glacier area variations. Depending on the rate of deglaciation process, the runoff of the Baksan River can drop by 10–30% because of a decrease in its glacial component, and the maximal water discharges can drop by 10–15%.

Авторлар туралы

E. Kornilova

Moscow State University, 119991, Moscow, Russia; Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: ekaterina.kornilova.hydro@gmail.com
Россия, 119991, Москва; Россия, 119333, Москва

I. Krylenko

Moscow State University, 119991, Moscow, Russia; Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: ekaterina.kornilova.hydro@gmail.com
Россия, 119991, Москва; Россия, 119333, Москва

E. Rets

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: ekaterina.kornilova.hydro@gmail.com
Россия, 119333, Москва

Yu. Motovilov

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: ekaterina.kornilova.hydro@gmail.com
Россия, 119333, Москва

F. Atabieva

High-Mountain Geophysical Institute, Roshydromet, 360030, Nalchik, KBR, Russia

Email: ekaterina.kornilova.hydro@gmail.com
Россия, 360030, КБР, Нальчик

I. Kuchmenova

High-Mountain Geophysical Institute, Roshydromet, 360030, Nalchik, KBR, Russia

Хат алмасуға жауапты Автор.
Email: ekaterina.kornilova.hydro@gmail.com
Россия, 360030, КБР, Нальчик

Әдебиет тізімі

  1. Золотарев Е.А., Харьковец Е.Г. Эволюция оледенения Эльбруса после малого ледникового периода // Лед и снег. 2012. № 2 (118). С. 15–22.
  2. Морейдо В.М., Калугин А.С. Оценка возможных изменений водного режима реки Селенги в XXI в. на основе модели формирования стока // Вод. ресурсы. 2017. Т. 44. № 3. С. 275–284.
  3. Патент РФ 2 020 622 193. База данных для регионального гидрологического моделирования на территории Российской Федерации. В.М. Морейдо, А.Н. Амербаев. 2020. Бюл. № 11.
  4. Погорелов А.В. Снежный покров Большого Кавказа: Опыт пространственно-временнóго анализа. М.: Академкнига, 2002. 287 с.
  5. Рыбак Е.А., Рыбак О.О. Анализ региональных особенностей структуры водопользования на Северном Кавказе. Ч. 1. Водообеспеченность и водопотребление // Системы контроля окружающей среды. 2021. № 2. Вып. 44. С. 96–105. https://doi.org/10.33075/2220-5861-2021-2-96-105
  6. Bliss A., Hock R., Radić V. Global response of glacier runoff to twenty-first century climate change // J. Geophys. Res.: Earth Surface. 2014. V. 119 (4). P. 717–730. https://doi.org/10.1002/2013JF002931
  7. Chernokulsky A.V., Kozlov F.A., Zolina O.G., Bulygina O.N., Mokhov I.I., Semenov V.A. Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades // Environ. Res. Lett. 2019. V. 14. P. 045001. https://doi.org/10.1088/1748-9326/aafb82
  8. Duethmann D., Bolch T., Farinotti D. et al. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia // Water Resour. Res. 2015. V. 51(6). P. 4727–4750. https://doi.org/10.1002/2014WR016716
  9. Gao X., Ye B., Zhang S., Qiao C., Zhang X. Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River Basin, China // Sci. China Earth Sci. 2010. V. 53 (6). P. 880–891. https://doi.org/10.1007/s11430-010-0073-4
  10. Gurtz J., Lang H., Verbunt M., Zappa M. The use of hydrological models for the simulation of climate change impacts on mountain hydrology // Global Change and Mountain Regions. 2005. P. 343–354. https://doi.org/10.1007/1-4020-3508-X_34
  11. Hagg W., Shahgedanova M., Mayer C., Lambrecht A., Popovnin V. A sensitivity study for water availability in the Northern Caucasus based on climate projections // Global and Planetary Change. 2010. V. 73 (3–4). P. 161–171. https://doi.org/10.1016/j.gloplacha.2010.05.005
  12. Huss M., Fischer M. Sensitivity of very small glaciers in the Swiss Alps to future climate change // Frontiers Earth Sci. 2016. V. 4. P. 34. https://doi.org/10.3389/feart.2016.00034
  13. Kalugin A.S., Motovilov Y.G. Runoff formation model for the amur river basin // Water Resour. 2018. V. 45 (2). P. 149–159. https://doi.org/10.1134/S0097807818020082
  14. Klok E.J., Jasper K., Roelofsma K.P., Gurtz J., Badoux A. Distributed hydrological modelling of a heavily glaciated Alpine river basin // Hydrol. Sci. J. 2001. V. 46 (4). P. 553–570. https://doi.org/10.1080/02626660109492850
  15. Kornilova E.D., Krylenko I.N., Rets E.P., Motovilov Y.G., Bogachenko E.M., Krylenko I.V., Petrakov D.A. Modeling of Extreme Hydrological Events in the Baksan River Basin, the Central Caucasus, Russia // Hydrology. 2021. V. 8 (1). P. 24. https://doi.org/10.3390/hydrology8010024
  16. Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume changes of Elbrus glaciers from 1997 to 2017 // Frontiers Earth Sci. 2019. V. 7. P. 153. https://doi.org/10.3389/feart.2019.00153
  17. Marzeion B., Hock R., Anderson B.A., Bliss A., Champollion N., Fujita K., Huss M., Immerzeel W.W., Kraaijenbrink P.D., Malles J.H., Maussion F., Radic V., Rounce D.R., Sakai A., Shannon S., Wal R.V., Zekollari H. Partitioning the Uncertainty of Ensemble Projections of Global Glacier Mass Change // Earth’s Future. 2020. V. 8 (7). P. e2019EF001470. https://doi.org/10.1029/2019EF001470
  18. Motovilov Y.G., Gottschalk L., Engeland K., Belokurov A. ECOMAG – Regional Model of Hydrological Cycle. Application to the NOPEX Region. 1999. 88 p.
  19. Motovilov Y., Kalugin A., Gelfan A. An ECOMAG-based Regional Hydrological Model for the Mackenzie River basin // EGU General Assembly Conf. Abstracts. 2017. P. 8064.
  20. Omani N., Srinivasan R., Karthikeyan R., Smith P. Hydrological modeling of highly glacierized basins (Andes, Alps, and Central Asia) // Water. 2017. V. 9 (2). P. 111. https://doi.org/10.3390/w9020111
  21. Rahman K., Maringanti C., Beniston M., Widmer F., Abbaspour K., Lehmann A. Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the Upper Rhone River watershed case in Switzerland // Water Resour. Management. 2013. V. 27 (2). P. 323–339. https://doi.org/10.1007/s11269-012-0188-9
  22. Rets E., Kireeva M. Hazardous hydrological processes in mountainous areas under the impact of recent climate change: case study of Terek River basin // IAHS Publ. 2010. V. 340 (2010). P. 126–134.
  23. Rets E.P., Durmanov I.N., Kireeva M.B. Peak runoff in the north Caucasus: Recent trends in magnitude, variation and timing. // Water Resour. 2019. V. 46 (1). P. 56–66. https://doi.org/10.1134/S0097807819070157
  24. Rets E.P., Durmanov I.N., Kireeva M.B., Smirnov A.M., Popovnin V.V. Past ‘peak water’in the North Caucasus: Deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges // Climatic Change. 2020. V. 163 (4). P. 2135–2151. https://doi.org/10.1007/s10584-020-02931-y
  25. Rets E.P., Dzhamalov R.G., Kireeva M.B., Frolova N.L., Durmanov I.N., Telegina A.A., Telegina E.A., Grigoriev V.Y. Recent trends of river runoff in the North Caucasus // Geogr. Environ. Sustainability. 2018. V. 11 (3). P. 61–70. https://doi.org/10.24057/2071-9388-2018-11-3-61-70
  26. RGI Consortium. Randolph Glacier Inventory-A Dataset of Global Glacier Outlines. Version 6.0. Global Land Ice Measurements from Space. Boulder, CO, USA, 2017.
  27. Shahgedanova M., Hagg W., Zacios M., Popovnin V. An Assessment of the recent past and future climate change, glacier retreat, and runoff in the caucasus region using dynamical and statistical downscaling and HBV-ETH hydrological model // Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-boreal Eastern Europe. 2009. P. 63–72. https://doi.org/10.1007/978-90-481-2283-7_8
  28. Shahgedanova M., Nosenko G., Kutuzov S., Rototaeva O., Khromova T. Deglaciation of the Caucasus Mountains, Russia / Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography // The Cryosphere. 2014. V. 8 (6). P. 2367–2379. https://doi.org/10.5194/tc-8-2367-2014
  29. Singh V., Jain S.K., Shukla S.K. Glacier change and glacier runoff variation in the Himalayan Baspa river basin // J. Hydrol. 2021. V. 593. P. 125918. https://doi.org/10.1016/j.jhydrol.2020.125918
  30. Tashilova A., Ashabokov B., Kesheva L., Teunova N. Analysis of climate change in the Caucasus region: End of the 20th–Beginning of the 21st Century // Climate. 2019. V. 7 (11). https://doi.org/10.3390/cli7010011
  31. Tielidze L.G., Wheate R.D. The greater caucasus glacier inventory (Russia, Georgia and Azerbaijan) // The Cryosphere. 2018. V. 12 (1). P. 81–94. https://doi.org/10.5194/tc-12-81-2018
  32. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century // Int. J. Climatol. 2019. V. 39 (12). P. 4703–4720. https://doi.org/10.1002/joc.6101

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (878KB)
3.

Жүктеу (540KB)
4.

Жүктеу (348KB)

© Е.Д. Корнилова, И.Н. Крыленко, Е.П. Рец, Ю.Г. Мотовилов, Ф.А. Атабиева, И.И. Кучменова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>