ALPHA- AND GAMMA-SYNUCLEINS CONTROL ENERGY METABOLISM AND ACTIVITY OF XANTHIN OXIDASE IN BRAIN CELLS
- 作者: Fedulina A.A1,2, Seryogina E.S1, Krayushkina A.M3, Chaprov K.D3, Vinokurov A.Y1, Abramov A.Y1,4
-
隶属关系:
- Orel State University named after I.S. Turgenev
- Lobachevsky State University of Nizhny Novgorod
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
- UCL Queen Square Institute of Neurology
- 期: 卷 90, 编号 10 (2025)
- 页面: 1487-1496
- 栏目: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/355114
- DOI: https://doi.org/10.31857/S0320972525100061
- ID: 355114
如何引用文章
详细
作者简介
A. Fedulina
Orel State University named after I.S. Turgenev; Lobachevsky State University of Nizhny NovgorodOryol, Russia; Nizhny Novgorod, Russia
E. Seryogina
Orel State University named after I.S. TurgenevOryol, Russia
A. Krayushkina
Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RASChernogolovka, Moscow Region, Russia
K. Chaprov
Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RASChernogolovka, Moscow Region, Russia
A. Vinokurov
Orel State University named after I.S. Turgenev
Email: vinokurovayu@oreluniver.ru
Oryol, Russia
A. Abramov
Orel State University named after I.S. Turgenev; UCL Queen Square Institute of NeurologyOryol, Russia; London, UK
参考
- Angelova, P. R., Esteras, N., and Abramov, A. Y. (2021) Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention, Med. Res. Rev., 41, 770-784, https://doi.org/10.1002/med.21712.
- Gleichmann, M., and Mattson, M. P. (2011) Neuronal calcium homeostasis and dysregulation, Antioxid. Redox. Signal., 14, 1261-1273, https://doi.org/10.1089/ars.2010.3386.
- Angelova, P. R., and Abramov, A. Y. (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration, FEBS Lett., 592, 692-702, https://doi.org/10.1002/1873-3468.12964.
- Gandhi, S., and Abramov, A. Y. (2012) Mechanism of oxidative stress in neurodegeneration, Oxid. Med. Cell. Longev., 2012, 428010, https://doi.org/10.1155/2012/428010.
- Burrage, E. N., Colbentz, T., Prabhu, S. S., Childers, R., Bryner, R. W., Lewis, S. E., DeVallance, E., Kelley, E. E., and Chandler, P. D. (2023) Xanthine oxidase mediates chronic stress-induced cerebrovascular dysfunction and cognitive impairment, J. Cereb. Blood Flow Metab., 43, 905-920, https://doi.org/10.1177/0271678X231152551.
- Angelova, P. R., Myers, I., and Abramov, A. Y. (2023) Carbon monoxide neurotoxicity is triggered by oxidative stress induced by ROS production from three distinct cellular sources, Redox Biol., 60, 102598, https://doi.org/10.1016/j.redox.2022.102598.
- Abramov, A. Y., Scorziello, A., and Duchen, M. R. (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation, J. Neurosci., 27, 1129-1138, https://doi.org/10.1523/JNEUROSCI.4468-06.2007.
- Xia, Y., and Zweier, J. L. (1995) Substrate control of free radical generation from xanthine oxidase in the postischemic heart, J. Biol. Chem., 270, 18797-18803, https://doi.org/10.1074/jbc.270.32.18797.
- Kinugasa, Y., Ogino, K., Furuse, Y., Shiomi, T., Tsutsui, H., Yamamoto, T., Igawa, O., Hisatome, I., and Shigemasa, C. (2003) Allopurinol improves cardiac dysfunction after ischemia-reperfusion via reduction of oxidative stress in isolated perfused rat hearts, Circ. J., 67, 781-787, https://doi.org/10.1253/circj.67.781.
- Thies, J. L., Willicott, K., Craig, M. L., Greene, M. R., DuGay, C. N., Caldwell, G. A., and Caldwell, K. A. (2023) Xanthine dehydrogenase is a modulator of dopaminergic neurodegeneration in response to bacterial metabolite exposure in C. elegans, Cells, 12, 1170, https://doi.org/10.3390/cells12081170.
- Abramov, A.Y., Potapova, E. V., Dremin, V. V., and Dunaev, A. V. (2020) Interaction of oxidative stress and misfolded proteins in the mechanism of neurodegeneration, Life (Basel), 10, 1-14, https://doi.org/10.3390/life10070101.
- Calabresi, P., Mechelli, A., Natale, G., Volpicelli-Daley, L., Di Lazzaro, G., and Ghiglieri, V. (2023) Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction, Cell. Death. Dis., 14, 176, https://doi.org/10.1038/s41419-023-05672-9.
- Negi, S., Khurana, N., and Duggal, N. (2024) The misfolding mystery: α-synuclein and the pathogenesis of Parkinson's disease, Neurochem. Int., 177, 105760, https://doi.org/10.1016/j.neuint.2024.105760.
- Magistrelli, L., Contaldi, E., and Comi, C. (2021) The impact of SNCA variations and its product alpha-synuclein on non-motor features of Parkinson's disease, Life, 11, 804, https://doi.org/10.3390/life11080804.
- Guo, Y., Sun, Y., Song, Z., Zheng, W., Xiong, W., Yang, Y., Yuan, L., and Deng, H. (2021) Genetic analysis and literature review of SNCA variants in Parkinson's disease, Front. Aging Neurosci., 13, 648151, https://doi.org/10.3389/fnagi.2021.648151.
- Clayton, D. F., and George, J. M. (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease, Trends. Neurosci., 21, 249-254, https://doi.org/10.1016/S0166-2236(97)01213-7.
- Guschina, I. A., Ninkina, N., Roman, A., Pokrovskiy, M. V., and Buchman, V. L. (2021) Triple-knockout, synuclein-free mice display compromised lipid pattern, Molecules, 26, 1-22, https://doi.org/10.3390/molecules26113078.
- George, J. M. (2002) The synucleins, Genome Biol., 3, REVIEWS3002, https://doi.org/10.1186/gb-2001-3-1-reviews3002.
- Ninkina, N., Connor-Robson, N., Ustyugov, A. A., Tarasova, T. V., Shelkovnikova, T. A., and Buchman, V. L. (2015) A novel resource for studying function and dysfunction of α-synuclein: mouse lines for modulation of endogenous Snca gene expression, Sci. Rep., 5, 1-6, https://doi.org/10.1038/srep16615.
- Kokhan, V. S., Van'kin, G. I., Bachurin, S. O., and Shamakina, I. Y. (2013) Differential involvement of the gamma-synuclein in cognitive abilities on the model of knockout mice, BMC Neurosci., 14, 53, https://doi.org/10.1186/1471-2202-14-53.
- Ninkina, N., Tarasova, T. V., Chaprov, K. D., Roman, A. Y., Kukharsky, M. S., Kolik, L. G., Ovchinnikov, R., Ustyugov, A. A., Durnev, A. D., and Buchman, V. L. (2020) Alterations in the nigrostriatal system following conditional inactivation of α-synuclein in neurons of adult and aging mice, Neurobiol. Aging, 91, 76-87, https://doi.org/10.1016/j.neurobiolaging.2020.02.026.
- Greten-Harrison, B., Polydoro, M., Morimoto-Tomita, M., Diao, L., Williams, A. M., Nie, E. H., Makani, S., Tian, N., Castillo, P. E., Buchman, V. L., and Chandra, S. S. (2010) αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction, Proc. Natl. Acad. Sci. USA, 107, 19573-19578, https://doi.org/10.1073/pnas.1005005107.
- Vorobyov, V., Deev, A., Sukhanova, I., Morozova, O., Oganesyan, Z., Chaprov, K., and Buchman, V. L. (2022) Loss of the synuclein family members differentially affects baseline- and apomorphine-associated EEG determinants in single-, double- and triple-knockout mice, Biomedicines, 10, 3128, https://doi.org/10.3390/biomedicines10123128.
- Furuhashi, M. (2020) New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity, Am. J. Physiol. Endocrinol. Metab., 319, E827-E834, https://doi.org/10.1152/ajpendo.00378.2020.
- Starr, L. A., McKay, L. E., Peter, K. N., Seyfarth, L. M., Berkowitz, L. A., Caldwell, K. A., and Caldwell, G. A. (2023) Attenuation of dopaminergic neurodegeneration in a C. elegans Parkinson's model through regulation of xanthine dehydrogenase (XDH-1) expression by the RNA editase, ADR-2, J. Dev Biol., 11, 20, https://doi.org/10.3390/jdb11020020.
- Ludtmann, M. H. R., Angelova, P. R., Ninkina, N. N., Gandhi, S., Buchman, V. L., and Abramov, A. Y. (2016) Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase, J. Neurosci., 36, 10510-10521, https://doi.org/10.1523/JNEUROSCI.1659-16.2016.
- Ludtmann, M. H. R., Angelova, P. R., Horrocks, M. H., Choi, M. L., Rodrigues, M., Baev, A. Y., Berezhnov, A. V., Yao, Z., Little, D., Banushi, B., Al-Menhali, A. S., Ranasinghe, R. T., Whiten, D. R., Yapom, R., Dolt, K. S., Devine, M. J., Gissen, P., Kunath, T., Jaganjac, M., Pavlov, E. V., Klenerman, D., Abramov, A. Y., and Gandhi, S. (2018) α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease, Nat. Commun., 9, 2293, https://doi.org/10.1038/s41467-018-04422-2.
- Abramov, A. Y., Berezhnov, A. V., Fedotova, E. I., Zinchenko, V. P., and Dolgacheva, L. P. (2017) Interaction of misfolded proteins and mitochondria in neurodegenerative disorders, Biochem. Soc. Trans., 45, 1025-1033, https://doi.org/10.1042/BST20170024.
- Deas, E., Cremades, N., Angelova, P. R., Ludtmann, M. H. R., Yao, Z., Chen, S., Horrocks, M. H., Banushi, B., Little, D., Devine, M. J., Gissen, P., Klenerman, D., Dobson, C.M., Wood, N. W., Gandhi, S., and Abramov, A. Y. (2016) Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson's disease, Antioxid. Redox Signal., 24, 376-391, https://doi.org/10.1089/ars.2015.6343.
- Angelova, P. R., Choi, M.L., Berezhnov, A. V., Horrocks, M. H., Hughes, C. D., De, S., Rodrigues, M., Yapom, R., Little, D., Dolt, K. S., Kunath, T., Devine, M.J., Gissen, P., Shchepinov, M. S., Sylantyev, S., Pavlov, E. V., Klenerman, D., Abramov, A. Y., and Gandhi, S. (2020) Alpha synuclein aggregation drives ferropiosis: an interplay of iron, calcium and lipid peroxidation, Cell Death Differ., 27, 2781-2796, https://doi.org/10.1038/s41418-020-0542-z.
- Moorhouse, P. C., Grootveld, M., Halliwell, B., Quinlan, J. G., and Gutteridge, J. M. C. (1987) Allopurinol and oxypurinol are hydroxyl radical scavengers, FEBS Lett., 213, 23-28, https://doi.org/10.1016/0014-5793(87)81458-8.
- Grootveld, M., Halliwell, B., and Moorhouse, C. P. (1987) Action of uric acid, allopurinol and oxypurinol on the myeloperoxidase-derived oxidant hypochlorous acid, Free Radic. Res. Commun., 4, 69-76, https://doi.org/10.3109/10715768709088090.
- Harrison, R. (2004) Physiological roles of xanthine oxidoreductase, Drug Metab. Rev., 363-375, https://doi.org/10.1081/DMR-120037569.
- Guschina, I., Millership, S., O'Donnell, V., Ninkina, N., Harwood, J., and Buchman, V. (2011) Lipid classes and fatty acid patterns are altered in the brain of γ-synuclein null mutant mice, Lipids, 46, 121-130, https://doi.org/10.1007/s11745-010-3486-0.
- Millership, S., Ninkina, N., Rochford, J. J., and Buchman, V. L. (2013) γ-synuclein is a novel player in the control of body lipid metabolism, Adipocyte, 2, 276-278, https://doi.org/10.4161/adip.25162.
- Zhang, H., Kouadio, A., Cartledge, D., and Godwin, A. K. (2011) Role of gamma-synuclein in microtubule regulation, Exp. Cell. Res., 317, 1330-1339, https://doi.org/10.1016/j.yexcr.2010.10.013.
- Angelova, P. R., Esteras, N., Evans, J., Kostic, M., Melki, R., Prehn, J. H. M., Gandhi, S., Abramov, A. Y. (2025) α-synuclein fibrils per se but not α-synuclein seeded aggregation causes mitochondrial dysfunction and cell death in human neurons, Redox Biol., 86, 103817, https://doi.org/10.1016/j.redox.2025.103817.
补充文件

