АЛЬФА- И ГАММА-СИНУКЛЕИНЫ РЕГУЛИРУЮТ ЭНЕРГЕТИЧЕСКИЙ МЕТАБОЛИЗМ И АКТИВНОСТЬ КСАНТИНОКСИДАЗЫ В КЛЕТКАХ МОЗГА
- Авторы: Федулина А.А1,2, Серегина Е.С1, Краюшкина А.М3, Чапров К.Д3, Винокуров А.Ю1, Абрамов А.Ю1,4
-
Учреждения:
- ФГБОУ ВО «Орловский государственный университет имени И.С. Тургенева»
- ФГАОУ ВО «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»
- ФГБУН Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, Институт физиологически активных веществ
- Институт неврологии Университетского колледжа Лондона
- Выпуск: Том 90, № 10 (2025)
- Страницы: 1487-1496
- Раздел: Статьи
- URL: https://journals.rcsi.science/0320-9725/article/view/355114
- DOI: https://doi.org/10.31857/S0320972525100061
- ID: 355114
Цитировать
Аннотация
Ключевые слова
Об авторах
А. А Федулина
ФГБОУ ВО «Орловский государственный университет имени И.С. Тургенева»; ФГАОУ ВО «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»Орел, Россия; Нижний Новгород, Россия
Е. С Серегина
ФГБОУ ВО «Орловский государственный университет имени И.С. Тургенева»Орел, Россия
А. М Краюшкина
ФГБУН Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, Институт физиологически активных веществЧерноголовка, Московская обл., Россия
К. Д Чапров
ФГБУН Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, Институт физиологически активных веществЧерноголовка, Московская обл., Россия
А. Ю Винокуров
ФГБОУ ВО «Орловский государственный университет имени И.С. Тургенева»
Email: vinokurovayu@oreluniver.ru
Орел, Россия
А. Ю Абрамов
ФГБОУ ВО «Орловский государственный университет имени И.С. Тургенева»; Институт неврологии Университетского колледжа ЛондонаОрел, Россия; Лондон, Великобритания
Список литературы
- Angelova, P. R., Esteras, N., and Abramov, A. Y. (2021) Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention, Med. Res. Rev., 41, 770-784, https://doi.org/10.1002/med.21712.
- Gleichmann, M., and Mattson, M. P. (2011) Neuronal calcium homeostasis and dysregulation, Antioxid. Redox. Signal., 14, 1261-1273, https://doi.org/10.1089/ars.2010.3386.
- Angelova, P. R., and Abramov, A. Y. (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration, FEBS Lett., 592, 692-702, https://doi.org/10.1002/1873-3468.12964.
- Gandhi, S., and Abramov, A. Y. (2012) Mechanism of oxidative stress in neurodegeneration, Oxid. Med. Cell. Longev., 2012, 428010, https://doi.org/10.1155/2012/428010.
- Burrage, E. N., Colbentz, T., Prabhu, S. S., Childers, R., Bryner, R. W., Lewis, S. E., DeVallance, E., Kelley, E. E., and Chandler, P. D. (2023) Xanthine oxidase mediates chronic stress-induced cerebrovascular dysfunction and cognitive impairment, J. Cereb. Blood Flow Metab., 43, 905-920, https://doi.org/10.1177/0271678X231152551.
- Angelova, P. R., Myers, I., and Abramov, A. Y. (2023) Carbon monoxide neurotoxicity is triggered by oxidative stress induced by ROS production from three distinct cellular sources, Redox Biol., 60, 102598, https://doi.org/10.1016/j.redox.2022.102598.
- Abramov, A. Y., Scorziello, A., and Duchen, M. R. (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation, J. Neurosci., 27, 1129-1138, https://doi.org/10.1523/JNEUROSCI.4468-06.2007.
- Xia, Y., and Zweier, J. L. (1995) Substrate control of free radical generation from xanthine oxidase in the postischemic heart, J. Biol. Chem., 270, 18797-18803, https://doi.org/10.1074/jbc.270.32.18797.
- Kinugasa, Y., Ogino, K., Furuse, Y., Shiomi, T., Tsutsui, H., Yamamoto, T., Igawa, O., Hisatome, I., and Shigemasa, C. (2003) Allopurinol improves cardiac dysfunction after ischemia-reperfusion via reduction of oxidative stress in isolated perfused rat hearts, Circ. J., 67, 781-787, https://doi.org/10.1253/circj.67.781.
- Thies, J. L., Willicott, K., Craig, M. L., Greene, M. R., DuGay, C. N., Caldwell, G. A., and Caldwell, K. A. (2023) Xanthine dehydrogenase is a modulator of dopaminergic neurodegeneration in response to bacterial metabolite exposure in C. elegans, Cells, 12, 1170, https://doi.org/10.3390/cells12081170.
- Abramov, A.Y., Potapova, E. V., Dremin, V. V., and Dunaev, A. V. (2020) Interaction of oxidative stress and misfolded proteins in the mechanism of neurodegeneration, Life (Basel), 10, 1-14, https://doi.org/10.3390/life10070101.
- Calabresi, P., Mechelli, A., Natale, G., Volpicelli-Daley, L., Di Lazzaro, G., and Ghiglieri, V. (2023) Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction, Cell. Death. Dis., 14, 176, https://doi.org/10.1038/s41419-023-05672-9.
- Negi, S., Khurana, N., and Duggal, N. (2024) The misfolding mystery: α-synuclein and the pathogenesis of Parkinson's disease, Neurochem. Int., 177, 105760, https://doi.org/10.1016/j.neuint.2024.105760.
- Magistrelli, L., Contaldi, E., and Comi, C. (2021) The impact of SNCA variations and its product alpha-synuclein on non-motor features of Parkinson's disease, Life, 11, 804, https://doi.org/10.3390/life11080804.
- Guo, Y., Sun, Y., Song, Z., Zheng, W., Xiong, W., Yang, Y., Yuan, L., and Deng, H. (2021) Genetic analysis and literature review of SNCA variants in Parkinson's disease, Front. Aging Neurosci., 13, 648151, https://doi.org/10.3389/fnagi.2021.648151.
- Clayton, D. F., and George, J. M. (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease, Trends. Neurosci., 21, 249-254, https://doi.org/10.1016/S0166-2236(97)01213-7.
- Guschina, I. A., Ninkina, N., Roman, A., Pokrovskiy, M. V., and Buchman, V. L. (2021) Triple-knockout, synuclein-free mice display compromised lipid pattern, Molecules, 26, 1-22, https://doi.org/10.3390/molecules26113078.
- George, J. M. (2002) The synucleins, Genome Biol., 3, REVIEWS3002, https://doi.org/10.1186/gb-2001-3-1-reviews3002.
- Ninkina, N., Connor-Robson, N., Ustyugov, A. A., Tarasova, T. V., Shelkovnikova, T. A., and Buchman, V. L. (2015) A novel resource for studying function and dysfunction of α-synuclein: mouse lines for modulation of endogenous Snca gene expression, Sci. Rep., 5, 1-6, https://doi.org/10.1038/srep16615.
- Kokhan, V. S., Van'kin, G. I., Bachurin, S. O., and Shamakina, I. Y. (2013) Differential involvement of the gamma-synuclein in cognitive abilities on the model of knockout mice, BMC Neurosci., 14, 53, https://doi.org/10.1186/1471-2202-14-53.
- Ninkina, N., Tarasova, T. V., Chaprov, K. D., Roman, A. Y., Kukharsky, M. S., Kolik, L. G., Ovchinnikov, R., Ustyugov, A. A., Durnev, A. D., and Buchman, V. L. (2020) Alterations in the nigrostriatal system following conditional inactivation of α-synuclein in neurons of adult and aging mice, Neurobiol. Aging, 91, 76-87, https://doi.org/10.1016/j.neurobiolaging.2020.02.026.
- Greten-Harrison, B., Polydoro, M., Morimoto-Tomita, M., Diao, L., Williams, A. M., Nie, E. H., Makani, S., Tian, N., Castillo, P. E., Buchman, V. L., and Chandra, S. S. (2010) αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction, Proc. Natl. Acad. Sci. USA, 107, 19573-19578, https://doi.org/10.1073/pnas.1005005107.
- Vorobyov, V., Deev, A., Sukhanova, I., Morozova, O., Oganesyan, Z., Chaprov, K., and Buchman, V. L. (2022) Loss of the synuclein family members differentially affects baseline- and apomorphine-associated EEG determinants in single-, double- and triple-knockout mice, Biomedicines, 10, 3128, https://doi.org/10.3390/biomedicines10123128.
- Furuhashi, M. (2020) New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity, Am. J. Physiol. Endocrinol. Metab., 319, E827-E834, https://doi.org/10.1152/ajpendo.00378.2020.
- Starr, L. A., McKay, L. E., Peter, K. N., Seyfarth, L. M., Berkowitz, L. A., Caldwell, K. A., and Caldwell, G. A. (2023) Attenuation of dopaminergic neurodegeneration in a C. elegans Parkinson's model through regulation of xanthine dehydrogenase (XDH-1) expression by the RNA editase, ADR-2, J. Dev Biol., 11, 20, https://doi.org/10.3390/jdb11020020.
- Ludtmann, M. H. R., Angelova, P. R., Ninkina, N. N., Gandhi, S., Buchman, V. L., and Abramov, A. Y. (2016) Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase, J. Neurosci., 36, 10510-10521, https://doi.org/10.1523/JNEUROSCI.1659-16.2016.
- Ludtmann, M. H. R., Angelova, P. R., Horrocks, M. H., Choi, M. L., Rodrigues, M., Baev, A. Y., Berezhnov, A. V., Yao, Z., Little, D., Banushi, B., Al-Menhali, A. S., Ranasinghe, R. T., Whiten, D. R., Yapom, R., Dolt, K. S., Devine, M. J., Gissen, P., Kunath, T., Jaganjac, M., Pavlov, E. V., Klenerman, D., Abramov, A. Y., and Gandhi, S. (2018) α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease, Nat. Commun., 9, 2293, https://doi.org/10.1038/s41467-018-04422-2.
- Abramov, A. Y., Berezhnov, A. V., Fedotova, E. I., Zinchenko, V. P., and Dolgacheva, L. P. (2017) Interaction of misfolded proteins and mitochondria in neurodegenerative disorders, Biochem. Soc. Trans., 45, 1025-1033, https://doi.org/10.1042/BST20170024.
- Deas, E., Cremades, N., Angelova, P. R., Ludtmann, M. H. R., Yao, Z., Chen, S., Horrocks, M. H., Banushi, B., Little, D., Devine, M. J., Gissen, P., Klenerman, D., Dobson, C.M., Wood, N. W., Gandhi, S., and Abramov, A. Y. (2016) Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson's disease, Antioxid. Redox Signal., 24, 376-391, https://doi.org/10.1089/ars.2015.6343.
- Angelova, P. R., Choi, M.L., Berezhnov, A. V., Horrocks, M. H., Hughes, C. D., De, S., Rodrigues, M., Yapom, R., Little, D., Dolt, K. S., Kunath, T., Devine, M.J., Gissen, P., Shchepinov, M. S., Sylantyev, S., Pavlov, E. V., Klenerman, D., Abramov, A. Y., and Gandhi, S. (2020) Alpha synuclein aggregation drives ferropiosis: an interplay of iron, calcium and lipid peroxidation, Cell Death Differ., 27, 2781-2796, https://doi.org/10.1038/s41418-020-0542-z.
- Moorhouse, P. C., Grootveld, M., Halliwell, B., Quinlan, J. G., and Gutteridge, J. M. C. (1987) Allopurinol and oxypurinol are hydroxyl radical scavengers, FEBS Lett., 213, 23-28, https://doi.org/10.1016/0014-5793(87)81458-8.
- Grootveld, M., Halliwell, B., and Moorhouse, C. P. (1987) Action of uric acid, allopurinol and oxypurinol on the myeloperoxidase-derived oxidant hypochlorous acid, Free Radic. Res. Commun., 4, 69-76, https://doi.org/10.3109/10715768709088090.
- Harrison, R. (2004) Physiological roles of xanthine oxidoreductase, Drug Metab. Rev., 363-375, https://doi.org/10.1081/DMR-120037569.
- Guschina, I., Millership, S., O'Donnell, V., Ninkina, N., Harwood, J., and Buchman, V. (2011) Lipid classes and fatty acid patterns are altered in the brain of γ-synuclein null mutant mice, Lipids, 46, 121-130, https://doi.org/10.1007/s11745-010-3486-0.
- Millership, S., Ninkina, N., Rochford, J. J., and Buchman, V. L. (2013) γ-synuclein is a novel player in the control of body lipid metabolism, Adipocyte, 2, 276-278, https://doi.org/10.4161/adip.25162.
- Zhang, H., Kouadio, A., Cartledge, D., and Godwin, A. K. (2011) Role of gamma-synuclein in microtubule regulation, Exp. Cell. Res., 317, 1330-1339, https://doi.org/10.1016/j.yexcr.2010.10.013.
- Angelova, P. R., Esteras, N., Evans, J., Kostic, M., Melki, R., Prehn, J. H. M., Gandhi, S., Abramov, A. Y. (2025) α-synuclein fibrils per se but not α-synuclein seeded aggregation causes mitochondrial dysfunction and cell death in human neurons, Redox Biol., 86, 103817, https://doi.org/10.1016/j.redox.2025.103817.
Дополнительные файлы


