CYSTEINE SYNTHASE: CHARACTERISTICS OF THE MAIN ENZYME IN THE CYSTEINE SYNTHETIC PATHWAY

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Cysteine is an extremely important amino acid for the normal functioning of living organisms. In bacteria and plants, the main route of cysteine synthesis is the thioylation pathway, the second stage of which is provided by either cysteine synthase A (CysK) if the substrate is inorganic sulfide, or cysteine synthase B (CysM) if the substrate is thiosulfate. The crucial role of these enzymes in the synthesis of cysteine makes them promising targets of antimicrobial agents for the treatment of infectious diseases, the creation of new herbicides, as well as in the industrial production of cysteine. However, besides of the main functions, the additional activity of these enzymes is of interest, such as their use as antimicrobial or antibiotic film agents. This review examines the physico-chemical characteristics of CysK and CysM, discusses their diversity and potential applications in biotechnology and medicine.

作者简介

E. Les

Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" Russian Academy of Sciences; Department of Chemistry, Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

E. Pometun

Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovský University)

Moscow, Russia

S. Savin

Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" Russian Academy of Sciences; Department of Chemistry, Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

V. Tishkov

Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" Russian Academy of Sciences; Department of Chemistry, Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

A. Pometun

Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" Russian Academy of Sciences; Institute of Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba

Email: a.pometun@fbras.ru
Moscow, Russia; Moscow, Russia

参考

  1. Zeng, X., and Sarkar, A. (2021) Density functional theory study to functionalization of BC2N nanotubes with cysteine amino acid, J. Mol. Model., 27, 72, https://doi.org/10.1007/s00894-021-04685-5.
  2. Ma, Y., Chen, M., Huang, K., and Chang, W. (2024) The impact of cysteine on lifespan in three model organisms: a systematic review and meta-analysis, Aging Cell, 24, e14392, https://doi.org/10.1111/acel.14392.
  3. Bak, D., Betchel, T. J., Falco, J. A., and Weerapana, E. (2018) Cysteine reactivity across the sub-cellular universe, Curr. Opin. Chem. Biol., 176, 139-148.
  4. Robinson, P. J., and Bulleid, N. J. (2020) Mechanisms of disulfide bond formation in nascent polypeptides entering the secretory pathway, Cells, 9, 1994, https://doi.org/10.3390/cells9091994.
  5. Oo, H. K., Galicia-Medina, C. M., Nishiuchi, T., Tanida, R., Goto, H., Nakano, Y., Takeshita, Y., Sautio, Y., Takayama, H., and Takamura, T. (2025) Cysteine redoxome landscape in mouse brown adipose tissue under acute cold exposure, iScience, 28, 112051, https://doi.org/10.1016/j.isci.2025.112051.
  6. DiChiara, A. S., Li, R. C., Suen, P. H., Hosseini, A. S., Taylor, R. J., Weickhardt, A. F., Malhotra, D., McCaslin, D. R., and Shoulders, M. D. (2018) A cysteine-based molecular code informs collagen C-propeptide assembly, Nat. Commun., 9, 4206, https://doi.org/10.1038/s41467-018-06185-2.
  7. Brosnan, J. T., and Brosnan, M. E. (2006) Amino acid assessment workshop, J. Nutr., 136, 16365-16408, https://doi.org/10.1093/jn/136.6.16365.
  8. Paul, B. D. (2022) Cysteine metabolism and hydrogen sulfide signaling in Huntington's disease, Free Radic. Biol. Med., 186, 93-98, https://doi.org/10.1016/j.freeradbiomed.2022.05.005.
  9. Dröge, W., Eck, H. P., Gmünder, H., and Mihm, S. (1991) Modulation of Lymphocyte functions and immune responses by cysteine and cysteine derivatives, Am. J. Med., 91, 1405-1445, https://doi.org/10.1016/0002-9343(91)90297-B.
  10. Ferreira, D. M. S., Cheng, A. J., Agudelo, L. Z., Cervenka, I., Chaillou, T., Correia, J. C., Porsmyr-Palmertz, M., Izadi, M., Hansson, A., Martinez-Redondo, V., Valente-Siliva, P., Petterson-Klein, A. T., Estall, J. L., Robinson, M. M., Nair, K. S., Lanner, J. T., and Ruas, J. L. (2019) LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force, Skelet. Muscle, 9, 26, https://doi.org/10.1186/s13395-019-0214-1.
  11. Campanini, B., Benoni, R., Bettati, S., Beck, C. M., Hayes, C. S., and Mozzarelli, A. (2015) Moonlighting O-acetylserine sulfhydrylase: new functions for an old protein, Biochim. Biophys. Acta, 176, 139-148.
  12. Tao, Y., Zheng, D., Zou, W., Guo, T., Liao, G., and Zhou, W. (2024) Targeting the cysteine biosynthesis pathway in microorganisms: mechanism, structure, and drug discovery, Eur. J. Med. Chem., 271, 116461, https://doi.org/10.1016/j.ejmech.2024.116461.
  13. Du, H., Qi, Y., Qiao, J., Li, L., Xu, N., Shao, L., Wei, L., and Liu, J. (2023) Balancing Redox Homeostasis to improve I-Cysteine Production in Corynebacterium glutamicum, J. Agric. Food Chem., 71, 13848-13856, https://doi.org/10.1021/acs.jafc.3c03828.
  14. Nawaz, A., Rai, G. P., Singh, K., Shanker, A., and Ali, V. (2025) Computational approaches and experimental investigation for identification of potential inhibitors targeting cysteine synthase in Leishmania donovani, Comput. Biol. Med., 188, 109753, https://doi.org/10.1016/j.compbiomed.2025.109753.
  15. Caballero Cerbon, D. A., Gebhard, L., Dokuyucu, R., Ertl, T., Härtl, S., Mazhar, A., and Weuster-Botz, D. (2024) Challenges and advances in the bioproduction of L-cysteine, Molecules, 29, 486, https://doi.org/10.3390/molecules29020486.
  16. Ismail, N., Hashim, Y., Jamal, P., Othman, R., and Salleh, H. (2014) Production of cysteine: approaches, challenges and potential solution, Int. J. Biotechnol. Wellness Ind., 3, 95-101, https://doi.org/10.6000/1927-3037.2014.03.03.3.
  17. Atkuri, K. R., Mantovani, J. J., Herzenberg, L. A., and Herzenberg, L. A. (2007) N-Acetylcysteine-a safe antidote for cysteine-glutathione deficiency, Curr. Opin. Pharmacol., 7, 355-359, https://doi.org/10.1016/j.coph.2007.04.005.
  18. Millea, P. J. (2009) N-acetylcysteine: multiple clinical applications, Am. Fam. Physician, 80, 265-269.
  19. Ziggioti A., and Lualdi P. (1990) Mouth-soulable pharmaceutical compositions containing acetyl-cysteine, United State Patent US 4,970,236, 1990.
  20. Tenorio, M. C. D. S., Graciliano, N. G., Moura, F. A., de Oliveira, A. C. M., and Goulart, M. O. F. (2021) N-acetyl-cysteine (NAC): impacts on human health, Antioxidants (Basel), 10, 967, https://doi.org/10.3390/antiox10060967.
  21. Iorizzo, M., Piracchi, B. M., and Tosti, A. (2007) Nail cosmetics in nail disorders, J. Cosmet. Dermatol., 6, 53-58, https://doi.org/10.1111/j.1473-2165.2007.00290.x.
  22. Hillebrand, G., Bush, R. D., and Hillebrand, G. (1992) Use of N-acetyl-L-cysteine and derivatives and/or skin atropy, Great Britain Patent EP 0 734 718 A2.
  23. Lambert, I. A., and Kokini, J. L. (2001) Effect of L-cysteine on the rheological properties of wheat flour, Cereal Chem., 78, 226-230, https://doi.org/10.1094/CHEM.2001.78.3.226.
  24. Kredich, N. M. (2008) Biosynthesis of CYSTEINE, Ecosöl Plus, 3, 1-30, https://doi.org/10.1128/ecosalplus.3.6.1.11.
  25. Sauerwald, A. Zhu, W., Major, T. A., Roy, H., Palloura S., Jahn, D., Whitman, W. B., Yates, J. R. Srd, Ibba, M., and Söll, D. (2005) RNA-dependent cysteine biosynthesis in archaea, Science, 307, 1969-1972, https://doi.org/10.1126/science.1108329.
  26. Fujishima, K., Wang, K. M., Palmer, J. A., Abe, N., Nakahigashi, K., Endy, D., and Rothschild, L. J. (2018) Reconstruction of cysteine biosynthesis using engineered cysteine-free enzymes, Sci. Rep., 8, 1776, https://doi.org/10.1038/s41598-018-19920-y.
  27. Bogicevic, B., Berthoud, H., Portmann, R., Meile, L., and Irmler, S. (2012) Cysk from Lactobacillus casei encodes a protein with O-acetylserine sulfhydrylase and cysteine desulfurization activity, Appl. Microbiol. Biotechnol., 94, 1209-1220, https://doi.org/10.1007/s00253-011-3677-5.
  28. Cherest, H., Thomas, D., and Surdin-Kerjan, Y. (1993) Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment, J. Bacteriol., 175, 5366-5374, https://doi.org/10.1128/jb.175.17.5366-5374.1993.
  29. Fujita, Y., and Takegawa, K. (2004) Characterization of two genes encoding putative cysteine synthase required for cysteine biosynthesis in Schizosaccharomyces pombe, Biosci. Biotechnol. Biochem., 68, 306-311, https://doi.org/10.1271/bbb.68.306.
  30. Guedon, E., and Martin-Verstraete, I. (2006) Cysteine metabolism and its regulation in bacteria, in Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering, 195-218, https://doi.org/10.1007/7171_2006_060.
  31. Paul, B. D., Sbodio, J. I., and Snyder, S. H. (2018) Cysteine metabolism in neuronal redox homeostasis, Trends Pharmacol. Sci., 39, 513-524, https://doi.org/10.1016/j.tips.2018.02.007.
  32. Ishii, I., Akahoshi, N., Yamada, H., Nakano, S., Izumi, T., and Suematsu, M. (2010) Cystathionine γ-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury, J. Biol. Chem., 285, 26388-26368, https://doi.org/10.1074/jbc.M110.147439.
  33. Werge, M. P., McCann, A., Galsgaard, E. D., Holst, D., Bugge, A., Wewer Albrechtsen, N. J., and Gluud, L. L. (2021) The role of the transsulfuration pathway in non-alcoholic fatty liver disease, J. Clin. Med., 10, 1081, https://doi.org/10.3390/jcm10051081.
  34. Borup, B., and Ferry, J. G. (2000) O-acetylserine sulfhydrylase from Methanosarcina thermophila, J. Bacteriol., 182, 45-50, https://doi.org/10.1128/B.182.1.45-50.2000.
  35. Toyomoto, T. Ono, K., Shiba, T., Momitani, K., Zhang, T., Tsutsuki, H., Ishikawa, T., Hoso, K., Hamada, K., Rahman, K., Wen, L., Maeda, Y., Yamamoto, K., Matsuoka, K., Hanaoka, K., Niidome, T., Akaike, T., and Sawa, T. (2023) Alkyl gallates inhibit serine O-acetyltransferase in bacteria and enhance susceptibility of drug-resistant Gram-negative bacteria to antibiotics, Front. Microbiol., 14, 1276447, https://doi.org/10.3389/fmich.2023.1276447.
  36. Franko, N., Grammatoglou, K., Campanini, B., Costantino, G., Jirgensons, A., and Mozzarelli, A. (2018) Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives, J. Enzyme Inhib. Med. Chem., 33, 1343-1351, https://doi.org/10.1080/14756366.2018.1504040.
  37. Rabeh, W. M., Alguindigue, S. S., and Cook, P. F. (2005) Mechanism of the addition half of the O-acetylserine sulfhydrylase-A reaction, Biochemistry, 44, 5541-5550, https://doi.org/10.1021/bi047479i.
  38. Tai, C. H., and Cook, P. F. (2000) O-acetylserine sulfhydrylase, Adv. Enzymol. Relat. Areas Mol. Biol., 74, 185-234, https://doi.org/10.1002/9780470123201.ch5.
  39. Rabeh, W. M., and Cook, P. F. (2004) Structure and mechanism of O-acetylserine sulfhydrylase, J. Biol. Chem., 279, 26803-26806, https://doi.org/10.1074/jbc.R400001200.
  40. Van Der Ploeg, J. R., Barone, M., and Leisinger, T. (2001) Functional analysis of the Bacillus subtilis cysk and cysII genes, FEMS Microbiol. Lett., 201, 29-35, https://doi.org/10.1016/S0378-1097(01)00225-7.
  41. Joshi, P., Gupta, A., and Gupta, V. (2019) Insights into multifaceted activities of Cysk for therapeutic interventions, 3 Biotech., 9, 44, https://doi.org/10.1007/s13205-019-1572-4.
  42. Qin, Y., Teng, Y., Yang, Y., Mao, Z., Zhao, S., Zhang, N., Li, X., and Niu, W. (2024) Advancements in inhibitors of crucial enzymes in the cysteine biosynthetic pathway: serine acetyltransferase and O-acetylserine sulfhydrylase, Chem. Biol. Drug Des., 104, e14573, https://doi.org/10.1111/cbdd.14573.
  43. Ramirez, A., Castañeda, M., Xiqui, M. L., Sosa, A., and Baca, B. E. (2006) Identification, cloning and characterization of cysk, the gene encoding O-acetylserine (thiol)-lyase from Azospirillum brasilense, which is involved in tellurite resistance, FEMS Microbiol. Lett., 261, 272-279, https://doi.org/10.1111/j.1574-6968.2006.00369.x.
  44. Chinthalapudi, K., Kumar, M., Kumar, S., Jain, S., Alam, N., and Gourinath, S. (2008) Crystal structure of native O-acetyl-serine sulfhydrylase from Entamoeba histolytica and its complex with cysteine: structural evidence for cysteine binding and lack of interactions with serine acetyl transferase, Proteins, 72, 1222-1232, https://doi.org/10.1002/prot.22013.
  45. Ueland, P. M., McCann, A., Midttun, O., and Ulvik, A. (2017) Inflammation, vitamin B6 and related pathways, Mol. Aspects Med., 53, 10-27, https://doi.org/10.1016/j.mam.2016.08.001.
  46. Burkhard, P., Jagannatha Rao, G. S., Hohenester, E., Schnackerz, K. D., Cook, P. F., and Jansonius, J. N. (1998) Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium, J. Mol. Biol., 283, 121-133, https://doi.org/10.1006/jmbi.1998.2037.
  47. Cook, P. F. (2003) α,β-Elimination reaction of O-acetylserine sulfhydrylase. Is the pyridine ring required? Biochim. Biophys. Acta, 1647, 66-69, https://doi.org/10.1016/S1570-9639(03)00052-9.
  48. Tai, C. H., Nalabolu, S. R., Cook, P. F., Jacobson, T. M., Minter, D. E., and Cook, P. F. (1993) Kinetic mechanisms of the A and B isozymes of O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2 using the natural and alternative reactants, Biochemistry, 32, 6433-6442, https://doi.org/10.1021/bi000760017.
  49. Singh, K., Singh, K. P., Equbal, A., Suman, S. S., Zaidi, A., Garg, G., Pandey, K., Das, P., and Ali, V. (2016) Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani, Biochimie, 131, 39-44, https://doi.org/10.1016/j.biochi.2016.09.004.
  50. Williams, R. A. M., Westrop, G. D., and Coombs, G. H. (2009) Two pathways for cysteine biosynthesis in Leishmania major, Biochem. J., 420, 451-462, https://doi.org/10.1042/Bj20082441.
  51. Westrop, G. D., Goodall, G., Mottram, J. C., and Coombs, G. H. (2006) Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine, J. Biol. Chem., 281, 25062-25075, https://doi.org/10.1074/jbc.M600688200.
  52. Mino, K., and Ishikawa, K. (2003) Characterization of a novel thermostable O-acetylserine sulfhydrylase from Aeropyrum pernix Kl., J. Bacteriol., 185, 2277-2284, https://doi.org/10.1128/JB.185.7.2277-2284.2003.
  53. Bonner, E. R., Cahoon, R. E., Knapke, S. M., and Jez, J. M. (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana, J. Biol. Chem., 280, 38803-38813, https://doi.org/10.1074/jbc.M505313200.
  54. Mino, K., Yamonoue, T., Sakiyama, T., Eisaki, N., Matsuyama, A., and Nakanishi, K. (2000) Effects of bienzyme complex formation of cysteine synthetase from Escherichia coli on some properties and kinetics, Biosci. Biotechnol. Biochem., 64, 1628-1640, https://doi.org/10.1271/bbb.64.1628.
  55. Harun-Ur-Rashid, M., Oogai, S., Parvee, S., Inafuk, M., Iwasak, H., Fukut, M., Amzad Hossai, M., and Oku, H. (2019) Molecular cloning of putative chloroplastic cysteine synthase in Leucaena leucocephala, J. Plant Res., 133, 95-108, https://doi.org/10.1007/s10265-019-01158-y.
  56. Sowerby, K., Freitag-Pohl, S., Murillo, A. M., Silber, A. M., and Pohl, E. (2023) Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis, Acta Crystallogr. D Struct. Biol., 79, 518-530, https://doi.org/10.1107/S2059798323003613.
  57. Ma, W., Wang, J., Li, Y., and Wang, X. (2019) Cysteine synthase A overexpression in Corynebacterium glutamicum enhances l-isoleucine production, Biotechnol. Appl. Biochem., 66, 74-81, https://doi.org/10.1002/bab.1698.
  58. Yamamoto, K., Oshima, T., Nonaka, G., Ito, H., and Ishihama, A. (2011) Induction of the Escherichia coli cyst gene by genetic and environmental factors, FEMS Microbiol. Lett., 323, 88-95, https://doi.org/10.1111/j.1574-6968.2011.02364.x.
  59. Kaundal, S., Uttam, M., and Thakur, K. G. (2016) Dual role of a biosynthetic enzyme, Cysk, in contact dependent growth inhibition in bacteria, PLoS One, 11, e0159844, https://doi.org/10.1371/journal.pone.0159844.
  60. Kaushik, A., Rahisuddin, R., Saini, N., Singh, R. P., Kaur, R., Koul, S., and Kumaran, S. (2021) Molecular mechanism of selective substrate engagement and inhibitor disengagement of cysteine synthase, J. Biol. Chem., 296, 100041, https://doi.org/10.1074/jbc.RA120.014490.
  61. Hara, S., Payne, M. A., Schnackerz, K. D., and Cook, P. F. (1990) A rapid purification procedure and computer-assisted sulfide ion selective electrode assay for 0-acetylserine sulfhydrylase from Salmonella typhimurium, Protein Express Purif., 1, 70-76, https://doi.org/10.1016/1046-5928(90)90048-4.
  62. Römer, S., D'Harlingue, A., Camara, B., Schantz, R., and Kuntz, M. (1992) Cysteine synthase from Capsicum annuum chromoplasts: Characterization and cDNA cloning of an up-regulated enzyme during fruit development, J. Biol. Chem., 267, 17966-17970, https://doi.org/10.1016/S0021-9258(19)37137-6.
  63. Amori, L., Katkevica, S., Bruno, A., Campanini, B., Felici, P., Mozzarelli, A., and Costantino, G. (2012) Design and synthesis of trans-2-substituted-cyclopropane-1-carboxylic acids as the first non-natural small molecule inhibitors of 0-acetylserine sulfhydrylase, Medchemcomm, 3, 1111-1116, https://doi.org/10.1039/c2md20100c.
  64. Owais, W. M., and Gharaibeh, R. (1990) Cloning of the E. coli 0-acetylserine sulfhydrylase gene: ability of the clone to produce a mutagenic product from azide and 0-acetylserine, Mutat. Res., 245, 151-155, https://doi.org/10.1016/0165-7992(90)90043-J.
  65. Hicks, J. L., Oldham, K. E. A., McGarvie, J., and Walker, E. J. (2022) Combating antimicrobial resistance via the cysteine biosynthesis pathway in bacterial pathogens, Biosci. Rep., 42, BSR20220368, https://doi.org/10.1042/BSR20220368.
  66. Rahman, A., Ono, K., Toyomoto, T., Hanaoka, K., and Sawa, T. (2025) Identification of fungal metabolite gliotoxin as a potent inhibitor against bacterial 0-acetylserine sulfhydrylase Cysk and CysM, Int. J. Mol. Sci., 26, 1106, https://doi.org/10.3390/jjms26031106.
  67. Marchetti, M., De Angelis, F. S., Annunziato, G., Constantino, G., Pieroni, M., Ronda, L., Mozarelli, A., Campanini, B., Cannistraro, S., Bizzarri, A. R., and Betatti, S. A. (2021) A competitive o-acetylserine sulfhydrylase inhibitor modulates the formation of cysteine synthase complex, Catalysts, 11, 700, https://doi.org/10.3390/catal11060700.
  68. Kant, V., Vijayakumar, S., Sahoo, G. C., Ali, V., Singh, R., Chaudhery, S. S., and Das, P. (2019) In silico screening and validation of high-affinity tetra-peptide inhibitor of Leishmania donovani 0-acetyl serine sulfhydrylase (OASS), J. Biomol. Struct. Dyn., 37, 481-492, https://doi.org/10.1080/07391102.2018.1429315.
  69. Shirzadian-Khorramabad, R., Jing, H. C., Everts, G. E., Schippers, J. H. M., Hille, J., and Djikwel, P. P. (2010) A mutation in the cytosolic 0-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis, BMC Plant Biol., 10, 80, https://doi.org/10.1186/1471-2229-10-80.
  70. Awano, N., Wada, M., Mori, H., Nakamori, S., and Takagi, H. (2005) Identification and functional analysis of Escherichia coli cysteine desulfhydrases, Appl. Environ. Microbiol., 71, 4149-4152, https://doi.org/10.1128/AEM.71.7.4149-4152.2005.
  71. Hohman, J. L., Yamamoto, K., and Oshima, T. (2007) Transcriptomic responses of bacterial cells to sublethal metal ion stress, Mol. Biol. Heavy Metals, 6, 73-115, https://doi.org/10.1007/7171_2006_074.
  72. Rosa, B., Marchetti, M., Paredi, G., Amenitsch, H., Franko, N., Benoni, R., Giabhai, B., De Marino, M. G., Mozzarelli, A., Ronda, L., Storici, P., Campanini, B., and Betatti, S. (2019) Combination of SAXS and protein painting discloses the three-dimensional organization of the bacterial cysteine synthase complex, a potential target for enhancers of antibiotic action, Int. J. Mol. Sci., 20, 5219, https://doi.org/10.3390/jjms20205219.
  73. Salsi, E., Campanini, B., Betatti, S., Raboni, S., Roderick, S. L., Cook, P. F., and Mozzarelli, A. (2010) A two-step process controls the formation of the bienzyme cysteine synthase complex, J. Biol. Chem., 285, 12813-12822, https://doi.org/10.1074/jbc.M109.075762.
  74. Spyrakis, F., Singh, R., Gozzini, P., Campanini, B., Salsi, E., Felici, P., Raboni, S., Benedetti, P., Gruciani, G., Kellogg, G., Cook, P. F., and Mozzarelli, A. (2013) Isozyme-specific ligands for 0-acetylserine sulfhydrylase, a novel antibiotic target, PLoS One, 8, e77558, https://doi.org/10.1371/journal.pone.0077558.
  75. Francois, J.A., Kumaran, S., and Jez, J. M. (2006) Structural basis for interaction of 0-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex, Plant Cell, 18, 3647-3655, https://doi.org/10.1105/tpc.106.047316.
  76. Singh, R. P., Saini, N., Sharma, G., Rahisuddin, R., Patel, M., Kaushik, A., and Kumaran, S. (2021) Moonlighting biochemistry of cysteine synthase: a species-specific global regulator, J. Mol. Biol., 433, 167255, https://doi.org/10.1016/j.jmb.2021.167255.
  77. Raj, I., Kumar, S., and Gourinath, S. (2012) The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences, Acta Crystallogr. D Biol. Crystallogr., 68, 909-919, https://doi.org/10.1107/S0907444912016459.
  78. Soutourina, O., Poupel, O., Coppée, J.Y., Danchin, A., Msadek, T., and Martin-Verstraete, I. (2009) CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation, Mol. Microbiol., 73, 194-211, https://doi.org/10.1111/j.1365-2958.2009.06760.x.
  79. Dharavath, S., Raj, I., and Gourinath, S. (2017) Structure-based mutational studies of O-acetylserine sulfhydrylase reveal the reason for the loss of cysteine synthase complex formation in Brucella abortus, Biochem. J., 474, 1221-1239, https://doi.org/10.1042/BCJ20161062.
  80. Benoni, R., Beck, C. M., Garza-Sánchez, F., Bettati, S., Mozzarelli, A., Hayes, C. S., and Campanini, B. (2017) Activation of an anti-bacterial toxin by the biosynthetic enzyme Cysk: mechanism of binding, interaction specificity and competition with cysteine synthase, Sci. Rep., 7, 8817, https://doi.org/10.1038/s41598-017-09022-6.
  81. Johnson, P. M., Beck, C. M., Morse, R. P., Garza-Sánchez, F., Low, D. A., Hayes, C. S., and Goulding, C. W. (2016) Unraveling the essential role of Cysk in CDI toxin activation, Proc. Natl. Acad. Sci. USA, 113, 9792-9797, https://doi.org/10.1073/pnas.1607112113.
  82. Feng, Z., Yashiro, Y., and Tomita, K. (2024) Mechanism of activation of contact-dependent growth inhibition tRNAs toxin by the amino acid biogenesis factor Cysk in the bacterial competition system, Nucleic Acids Res., 53, gkae735, https://doi.org/10.1093/nar/gkae735.
  83. Peng, H., Shen, J., and Edmonds, K. A. (2017) Sulfide homeostasis and nitroxyl intersect via formation of reactive sulfur species in Staphylococcus aureus, nSphere, 2, 1-21, https://doi.org/10.1128/mSphere.00082-17.
  84. Frávega, J., Álvarez, R., Díaz, F., Inostroza, O., Tejías, C., Rodas, P. I., Paredes-Sabja, D., et al. (2016). Salmonella typhimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a Cysk-dependent manner, J. Antimicrob. Chemother., 71, 3409-3415, https://doi.org/10.1093/jac/dkw311.
  85. Hullo, M. F., Auger, S., Soutourina, O., Barzu, O., Yvon, M., Danchin, A., et al. (2007) Conversion of methionine to cysteine in Bacillus subtilis and its regulation, J. Bacteriol., 189, 187-197, https://doi.org/10.1128/JB.01273-06.
  86. Tanous, C., Soutourina, O., Raynal, B., Hullo, M. F., Mervelet, P., Gilles, A. M., Noirot, P., Danchin, A., England, P., and Martin-Verstraete, I. (2008) The CymR regulator in complex with the enzyme Cysk controls cysteine metabolism in Bacillus subtilis, J. Biol. Chem., 283, 35551-35560, https://doi.org/10.1074/jbc.M805951200.
  87. Talvenmäki, H., Lallukka, N., Survo, S., and Romantschuk, M. (2019) Fenton's reaction-based chemical oxidation in suboptimal conditions can lead to mobilization of oil hydrocarbons but also contribute to the total removal of volatile compounds, Environ. Sci. Pollut. Res. Int., 26, 34670-34684, https://doi.org/10.1007/s11356-019-06547-3.
  88. Singh, P., Brooks, J. F., Ray, V. A., Mandel, M. J., and Visick, K. L. (2015) Cysk plays a role in biofilm formation and colonization by Vibrio fischeri, Appl. Environ. Microbiol., 81, 5223-5234, https://doi.org/10.1128/AEM.00157-15.
  89. Elebiju, O. F., Oduselu, G. O., Ogunnupebi, T. A., Ajani, O. O., and Adebiyi, E. (2024) In silico design of potential small-molecule antibiotic adjuvants against Salmonella typhimurium ortho acetyl sulfhydrylase synthase to address antimicrobial resistance, Pharmaceuticals (Basel), 17, 543, https://doi.org/10.3390/ph17050543.
  90. De Foletto-Felipe M. P., Abrahão, J., Siqueira-Soares, R., de Siqueira-Soares, R. C., de Contesoto, I. C., Grizza, L. H. E., de Almeida, G. H. G., Constantin, R. P., Philippsen, G. S., Seixas, F. A. V., Bueno, P. S. A., de Oliveira, M. A. S., Constantin, R. P., dos Santos, W. D., Ferrarese-Filho, O, and Marchiosi, R. (2023) Inhibition of O-acetylserine (thiol) lyase as a promising new mechanism of action for herbicides, Plant Physiol. Biochem., 204, 108127, https://doi.org/10.1016/j.plaphy.2023.108127.
  91. Ben-Shushan, R. S., Cohen, E., Ben-Naim, N., Amram, E., Gressel, J., Peleg, D., Dotan, N., Bloch, I., and Gal, M. (2024) Discovering new mode-of-action pesticide leads inhibiting protein-protein interactions: example targeting plant O-acetylserine sulfhydrylase, Pest. Manag. Sci., 80, 6424-6436, https://doi.org/10.1002/ps.8372.
  92. Savinova, O. S., Glazunova, O. A., Moiseenko, K. V., Begunova, A. V., Rozhkova, I. V., and Fedorova, T. V. (2021) Exoproteome analysis of antagonistic interactions between the probiotic bacteria Limosilactobacillus reuteri LRI and Laeticoseibacillus rhamnosus F and multidrug resistant strain of Klebsiella pneumonia, Int. J. Mol. Sci., 22, 10999, https://doi.org/10.3390/ijms222010999.
  93. Nakamura, T., Iwahashi, H., and Eguchi, Y. (1984) Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium, J. Bacteriol., 158, 1122-1127, https://doi.org/10.1128/jb.158.3.1122-1127.1984.
  94. Nakamura, T., Kon, Y., Iwahashi, H., and Eguchi, Y. (1983) Evidence that thiosulfate assimilation by Salmonella typhimurium is catalyzed by cysteine synthase B, J. Bacteriol., 156, 656-662, https://doi.org/10.1128/jb.156.2.656-662.1983.
  95. Hulanicka, M. D., Hallquist, S. G., Kredich, N. M., and Mojica, T. (1979) Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium, J. Bacteriol., 140, 141-146, https://doi.org/10.1128/jb.140.1.141-146.1979.
  96. Hitchcock, N., Kelly, D. J., Hitchcock, A., and Taylor, A. J. (2023) Cysteine biosynthesis in Campylobacter jejuni: substrate specificity of CysM and the dualism of sulfide, Biomolecules, 13, 86, https://doi.org/10.3390/biom13010086.
  97. Salsi, E., Guan, R., Campanini, B., Bettati, S., Lin, J., Cook, P. F., and Mozzarelli, A. (2011) Exploring O-acetylserine sulfhydrylase-B isoenzyme from Salmonella typhimurium by fluorescence spectroscopy, Arch. Biochem. Biophys., 505, 178-185, https://doi.org/10.1016/j.abb.2010.10.005.
  98. Agren, D., Schnell, R., Oehlmann, W., Singh, M., and Schneider, G. (2008) Cysteine synthase (CysM) of Mycobacterium tuberculosis is an O-phosphoserine sulfhydrylase: evidence for an alternative cysteine biosynthesis pathway in mycobacteria, J. Biol. Chem., 283, 31567-31574, https://doi.org/10.1074/jbc.M804877200.
  99. Burns-Huang, K., and Mundhra, S. (2019) Mycobacterium tuberculosis cysteine biosynthesis genes meet-cysto-cysM confer resistance to clofazimine, Tuberculosis (Edith), 115, 63-66, https://doi.org/10.1016/j.tube.2019.02.002.
  100. Jurgenson, C. T., Burns, K. E., Begley, T. P., and Falick, S. E. (2008) Crystal structure of a sulfur carrier protein complex found in the cysteine biosynthetic pathway of Mycobacterium tuberculosis, Biochemistry, 47, 10354-10364, https://doi.org/10.1021/b1800915j.
  101. Smirnova, G. V., Tyulenev, A. V., Bezmaternykh, K. V., Muzyka, N. G., Ushakov, V. Y., and Oktyabrsky, O. N. (2019) Cysteine homeostasis under inhibition of protein synthesis in Escherichia coli cells, Amino Acids, 51, 1577-1592, https://doi.org/10.1007/s00726-019-02795-2.
  102. Guan, R., Nimmo, S. A., Schnackerz, K. D., and Cook, P. F. (2009) 31P NMR studies of O-acetylserine sulfhydrylase-B from Salmonella typhimurium, Arch. Biochem. Biophys., 487, 85-90, https://doi.org/10.1016/j.abb.2009.05.016.
  103. Lynch, M. J., and Crane, B. R. (2019) Design, validation, and application of an enzyme-coupled hydrogen sulfide detection assay, Biochemistry, 58, 474-483, https://doi.org/10.1021/acs.biochem.8b01083.
  104. Zocher, G., Wiesand, U., and Schulz, G. E. (2007) High resolution structure and catalysis of O-acetylserine sulfhydrylase isozyme B from Escherichia coli, FEBS J., 274, 5382-5389, https://doi.org/10.1111/j.1742-4658.2007.06063.x.
  105. Bermúdez, M. A., Páez-Ochoa, M. A., Gotor, C., and Romero, L. C. (2010) Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control, Plant Cell, 22, 403-416, https://doi.org/10.1105/tpc.109.071985.
  106. Gotor, C., and Romero, L. C. (2013) S-sulfocysteine synthase function in sensing chloroplast redox status, Plant Signal. Behav., 8, 8-10, https://doi.org/10.4161/psb.23313.

补充文件

附件文件
动作
1. JATS XML
2. Таблица П1. Список цистеинсинтаз, использованных для построения филогенетического древа. Все организмы выделены цветами в соответствии с филогенетическим древом. Археи показаны красным, бактерии показаны розовым, грибы показаны коричневым, дрожжи показаны бежевым, животные показаны синим, простейшие показаны серым, растения показаны зелёным
下载 (213KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».