ЦИСТЕИНСИНТАЗА: ХАРАКТЕРИСТИКА ГЛАВНОГО ФЕРМЕНТА В ПУТИ СИНТЕЗА ЦИСТЕИНА
- Авторы: Лесь Е.К1,2, Пометун Е.В3, Савин С.С1,2, Тишков В.И1,2, Пометун А.А1,4
-
Учреждения:
- ФИЦ «Фундаментальные основы биотехнологии» РАН, Институт биохимии имени А.Н. Баха
- Московский государственный университет имени М.В. Ломоносова, химический факультет
- ФГАОУ ВО Первый МГМУ имени И.М. Сеченова Минздрава России (Сеченовский Университет)
- Российский университет дружбы народов имени Патриса Лумумбы, Медицинский институт
- Выпуск: Том 90, № 10 (2025)
- Страницы: 1403-1424
- Раздел: Статьи
- URL: https://journals.rcsi.science/0320-9725/article/view/355109
- DOI: https://doi.org/10.31857/S0320972525100016
- ID: 355109
Цитировать
Аннотация
Ключевые слова
Об авторах
Е. К Лесь
ФИЦ «Фундаментальные основы биотехнологии» РАН, Институт биохимии имени А.Н. Баха; Московский государственный университет имени М.В. Ломоносова, химический факультетМосква, Россия; Москва, Россия
Е. В Пометун
ФГАОУ ВО Первый МГМУ имени И.М. Сеченова Минздрава России (Сеченовский Университет)Москва, Россия
С. С Савин
ФИЦ «Фундаментальные основы биотехнологии» РАН, Институт биохимии имени А.Н. Баха; Московский государственный университет имени М.В. Ломоносова, химический факультет
В. И Тишков
ФИЦ «Фундаментальные основы биотехнологии» РАН, Институт биохимии имени А.Н. Баха; Московский государственный университет имени М.В. Ломоносова, химический факультетМосква, Россия; Москва, Россия
А. А Пометун
ФИЦ «Фундаментальные основы биотехнологии» РАН, Институт биохимии имени А.Н. Баха; Российский университет дружбы народов имени Патриса Лумумбы, Медицинский институт
Email: a.pometun@fbras.ru
Москва, Россия; Москва, Россия
Список литературы
- Zeng, X., and Sarkar, A. (2021) Density functional theory study to functionalization of BC2N nanotubes with cysteine amino acid, J. Mol. Model., 27, 72, https://doi.org/10.1007/s00894-021-04685-5.
- Ma, Y., Chen, M., Huang, K., and Chang, W. (2024) The impact of cysteine on lifespan in three model organisms: a systematic review and meta-analysis, Aging Cell, 24, e14392, https://doi.org/10.1111/acel.14392.
- Bak, D., Betchel, T. J., Falco, J. A., and Weerapana, E. (2018) Cysteine reactivity across the sub-cellular universe, Curr. Opin. Chem. Biol., 176, 139-148.
- Robinson, P. J., and Bulleid, N. J. (2020) Mechanisms of disulfide bond formation in nascent polypeptides entering the secretory pathway, Cells, 9, 1994, https://doi.org/10.3390/cells9091994.
- Oo, H. K., Galicia-Medina, C. M., Nishiuchi, T., Tanida, R., Goto, H., Nakano, Y., Takeshita, Y., Sautio, Y., Takayama, H., and Takamura, T. (2025) Cysteine redoxome landscape in mouse brown adipose tissue under acute cold exposure, iScience, 28, 112051, https://doi.org/10.1016/j.isci.2025.112051.
- DiChiara, A. S., Li, R. C., Suen, P. H., Hosseini, A. S., Taylor, R. J., Weickhardt, A. F., Malhotra, D., McCaslin, D. R., and Shoulders, M. D. (2018) A cysteine-based molecular code informs collagen C-propeptide assembly, Nat. Commun., 9, 4206, https://doi.org/10.1038/s41467-018-06185-2.
- Brosnan, J. T., and Brosnan, M. E. (2006) Amino acid assessment workshop, J. Nutr., 136, 16365-16408, https://doi.org/10.1093/jn/136.6.16365.
- Paul, B. D. (2022) Cysteine metabolism and hydrogen sulfide signaling in Huntington's disease, Free Radic. Biol. Med., 186, 93-98, https://doi.org/10.1016/j.freeradbiomed.2022.05.005.
- Dröge, W., Eck, H. P., Gmünder, H., and Mihm, S. (1991) Modulation of Lymphocyte functions and immune responses by cysteine and cysteine derivatives, Am. J. Med., 91, 1405-1445, https://doi.org/10.1016/0002-9343(91)90297-B.
- Ferreira, D. M. S., Cheng, A. J., Agudelo, L. Z., Cervenka, I., Chaillou, T., Correia, J. C., Porsmyr-Palmertz, M., Izadi, M., Hansson, A., Martinez-Redondo, V., Valente-Siliva, P., Petterson-Klein, A. T., Estall, J. L., Robinson, M. M., Nair, K. S., Lanner, J. T., and Ruas, J. L. (2019) LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force, Skelet. Muscle, 9, 26, https://doi.org/10.1186/s13395-019-0214-1.
- Campanini, B., Benoni, R., Bettati, S., Beck, C. M., Hayes, C. S., and Mozzarelli, A. (2015) Moonlighting O-acetylserine sulfhydrylase: new functions for an old protein, Biochim. Biophys. Acta, 176, 139-148.
- Tao, Y., Zheng, D., Zou, W., Guo, T., Liao, G., and Zhou, W. (2024) Targeting the cysteine biosynthesis pathway in microorganisms: mechanism, structure, and drug discovery, Eur. J. Med. Chem., 271, 116461, https://doi.org/10.1016/j.ejmech.2024.116461.
- Du, H., Qi, Y., Qiao, J., Li, L., Xu, N., Shao, L., Wei, L., and Liu, J. (2023) Balancing Redox Homeostasis to improve I-Cysteine Production in Corynebacterium glutamicum, J. Agric. Food Chem., 71, 13848-13856, https://doi.org/10.1021/acs.jafc.3c03828.
- Nawaz, A., Rai, G. P., Singh, K., Shanker, A., and Ali, V. (2025) Computational approaches and experimental investigation for identification of potential inhibitors targeting cysteine synthase in Leishmania donovani, Comput. Biol. Med., 188, 109753, https://doi.org/10.1016/j.compbiomed.2025.109753.
- Caballero Cerbon, D. A., Gebhard, L., Dokuyucu, R., Ertl, T., Härtl, S., Mazhar, A., and Weuster-Botz, D. (2024) Challenges and advances in the bioproduction of L-cysteine, Molecules, 29, 486, https://doi.org/10.3390/molecules29020486.
- Ismail, N., Hashim, Y., Jamal, P., Othman, R., and Salleh, H. (2014) Production of cysteine: approaches, challenges and potential solution, Int. J. Biotechnol. Wellness Ind., 3, 95-101, https://doi.org/10.6000/1927-3037.2014.03.03.3.
- Atkuri, K. R., Mantovani, J. J., Herzenberg, L. A., and Herzenberg, L. A. (2007) N-Acetylcysteine-a safe antidote for cysteine-glutathione deficiency, Curr. Opin. Pharmacol., 7, 355-359, https://doi.org/10.1016/j.coph.2007.04.005.
- Millea, P. J. (2009) N-acetylcysteine: multiple clinical applications, Am. Fam. Physician, 80, 265-269.
- Ziggioti A., and Lualdi P. (1990) Mouth-soulable pharmaceutical compositions containing acetyl-cysteine, United State Patent US 4,970,236, 1990.
- Tenorio, M. C. D. S., Graciliano, N. G., Moura, F. A., de Oliveira, A. C. M., and Goulart, M. O. F. (2021) N-acetyl-cysteine (NAC): impacts on human health, Antioxidants (Basel), 10, 967, https://doi.org/10.3390/antiox10060967.
- Iorizzo, M., Piracchi, B. M., and Tosti, A. (2007) Nail cosmetics in nail disorders, J. Cosmet. Dermatol., 6, 53-58, https://doi.org/10.1111/j.1473-2165.2007.00290.x.
- Hillebrand, G., Bush, R. D., and Hillebrand, G. (1992) Use of N-acetyl-L-cysteine and derivatives and/or skin atropy, Great Britain Patent EP 0 734 718 A2.
- Lambert, I. A., and Kokini, J. L. (2001) Effect of L-cysteine on the rheological properties of wheat flour, Cereal Chem., 78, 226-230, https://doi.org/10.1094/CHEM.2001.78.3.226.
- Kredich, N. M. (2008) Biosynthesis of CYSTEINE, Ecosöl Plus, 3, 1-30, https://doi.org/10.1128/ecosalplus.3.6.1.11.
- Sauerwald, A. Zhu, W., Major, T. A., Roy, H., Palloura S., Jahn, D., Whitman, W. B., Yates, J. R. Srd, Ibba, M., and Söll, D. (2005) RNA-dependent cysteine biosynthesis in archaea, Science, 307, 1969-1972, https://doi.org/10.1126/science.1108329.
- Fujishima, K., Wang, K. M., Palmer, J. A., Abe, N., Nakahigashi, K., Endy, D., and Rothschild, L. J. (2018) Reconstruction of cysteine biosynthesis using engineered cysteine-free enzymes, Sci. Rep., 8, 1776, https://doi.org/10.1038/s41598-018-19920-y.
- Bogicevic, B., Berthoud, H., Portmann, R., Meile, L., and Irmler, S. (2012) Cysk from Lactobacillus casei encodes a protein with O-acetylserine sulfhydrylase and cysteine desulfurization activity, Appl. Microbiol. Biotechnol., 94, 1209-1220, https://doi.org/10.1007/s00253-011-3677-5.
- Cherest, H., Thomas, D., and Surdin-Kerjan, Y. (1993) Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment, J. Bacteriol., 175, 5366-5374, https://doi.org/10.1128/jb.175.17.5366-5374.1993.
- Fujita, Y., and Takegawa, K. (2004) Characterization of two genes encoding putative cysteine synthase required for cysteine biosynthesis in Schizosaccharomyces pombe, Biosci. Biotechnol. Biochem., 68, 306-311, https://doi.org/10.1271/bbb.68.306.
- Guedon, E., and Martin-Verstraete, I. (2006) Cysteine metabolism and its regulation in bacteria, in Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering, 195-218, https://doi.org/10.1007/7171_2006_060.
- Paul, B. D., Sbodio, J. I., and Snyder, S. H. (2018) Cysteine metabolism in neuronal redox homeostasis, Trends Pharmacol. Sci., 39, 513-524, https://doi.org/10.1016/j.tips.2018.02.007.
- Ishii, I., Akahoshi, N., Yamada, H., Nakano, S., Izumi, T., and Suematsu, M. (2010) Cystathionine γ-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury, J. Biol. Chem., 285, 26388-26368, https://doi.org/10.1074/jbc.M110.147439.
- Werge, M. P., McCann, A., Galsgaard, E. D., Holst, D., Bugge, A., Wewer Albrechtsen, N. J., and Gluud, L. L. (2021) The role of the transsulfuration pathway in non-alcoholic fatty liver disease, J. Clin. Med., 10, 1081, https://doi.org/10.3390/jcm10051081.
- Borup, B., and Ferry, J. G. (2000) O-acetylserine sulfhydrylase from Methanosarcina thermophila, J. Bacteriol., 182, 45-50, https://doi.org/10.1128/B.182.1.45-50.2000.
- Toyomoto, T. Ono, K., Shiba, T., Momitani, K., Zhang, T., Tsutsuki, H., Ishikawa, T., Hoso, K., Hamada, K., Rahman, K., Wen, L., Maeda, Y., Yamamoto, K., Matsuoka, K., Hanaoka, K., Niidome, T., Akaike, T., and Sawa, T. (2023) Alkyl gallates inhibit serine O-acetyltransferase in bacteria and enhance susceptibility of drug-resistant Gram-negative bacteria to antibiotics, Front. Microbiol., 14, 1276447, https://doi.org/10.3389/fmich.2023.1276447.
- Franko, N., Grammatoglou, K., Campanini, B., Costantino, G., Jirgensons, A., and Mozzarelli, A. (2018) Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives, J. Enzyme Inhib. Med. Chem., 33, 1343-1351, https://doi.org/10.1080/14756366.2018.1504040.
- Rabeh, W. M., Alguindigue, S. S., and Cook, P. F. (2005) Mechanism of the addition half of the O-acetylserine sulfhydrylase-A reaction, Biochemistry, 44, 5541-5550, https://doi.org/10.1021/bi047479i.
- Tai, C. H., and Cook, P. F. (2000) O-acetylserine sulfhydrylase, Adv. Enzymol. Relat. Areas Mol. Biol., 74, 185-234, https://doi.org/10.1002/9780470123201.ch5.
- Rabeh, W. M., and Cook, P. F. (2004) Structure and mechanism of O-acetylserine sulfhydrylase, J. Biol. Chem., 279, 26803-26806, https://doi.org/10.1074/jbc.R400001200.
- Van Der Ploeg, J. R., Barone, M., and Leisinger, T. (2001) Functional analysis of the Bacillus subtilis cysk and cysII genes, FEMS Microbiol. Lett., 201, 29-35, https://doi.org/10.1016/S0378-1097(01)00225-7.
- Joshi, P., Gupta, A., and Gupta, V. (2019) Insights into multifaceted activities of Cysk for therapeutic interventions, 3 Biotech., 9, 44, https://doi.org/10.1007/s13205-019-1572-4.
- Qin, Y., Teng, Y., Yang, Y., Mao, Z., Zhao, S., Zhang, N., Li, X., and Niu, W. (2024) Advancements in inhibitors of crucial enzymes in the cysteine biosynthetic pathway: serine acetyltransferase and O-acetylserine sulfhydrylase, Chem. Biol. Drug Des., 104, e14573, https://doi.org/10.1111/cbdd.14573.
- Ramirez, A., Castañeda, M., Xiqui, M. L., Sosa, A., and Baca, B. E. (2006) Identification, cloning and characterization of cysk, the gene encoding O-acetylserine (thiol)-lyase from Azospirillum brasilense, which is involved in tellurite resistance, FEMS Microbiol. Lett., 261, 272-279, https://doi.org/10.1111/j.1574-6968.2006.00369.x.
- Chinthalapudi, K., Kumar, M., Kumar, S., Jain, S., Alam, N., and Gourinath, S. (2008) Crystal structure of native O-acetyl-serine sulfhydrylase from Entamoeba histolytica and its complex with cysteine: structural evidence for cysteine binding and lack of interactions with serine acetyl transferase, Proteins, 72, 1222-1232, https://doi.org/10.1002/prot.22013.
- Ueland, P. M., McCann, A., Midttun, O., and Ulvik, A. (2017) Inflammation, vitamin B6 and related pathways, Mol. Aspects Med., 53, 10-27, https://doi.org/10.1016/j.mam.2016.08.001.
- Burkhard, P., Jagannatha Rao, G. S., Hohenester, E., Schnackerz, K. D., Cook, P. F., and Jansonius, J. N. (1998) Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium, J. Mol. Biol., 283, 121-133, https://doi.org/10.1006/jmbi.1998.2037.
- Cook, P. F. (2003) α,β-Elimination reaction of O-acetylserine sulfhydrylase. Is the pyridine ring required? Biochim. Biophys. Acta, 1647, 66-69, https://doi.org/10.1016/S1570-9639(03)00052-9.
- Tai, C. H., Nalabolu, S. R., Cook, P. F., Jacobson, T. M., Minter, D. E., and Cook, P. F. (1993) Kinetic mechanisms of the A and B isozymes of O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2 using the natural and alternative reactants, Biochemistry, 32, 6433-6442, https://doi.org/10.1021/bi000760017.
- Singh, K., Singh, K. P., Equbal, A., Suman, S. S., Zaidi, A., Garg, G., Pandey, K., Das, P., and Ali, V. (2016) Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani, Biochimie, 131, 39-44, https://doi.org/10.1016/j.biochi.2016.09.004.
- Williams, R. A. M., Westrop, G. D., and Coombs, G. H. (2009) Two pathways for cysteine biosynthesis in Leishmania major, Biochem. J., 420, 451-462, https://doi.org/10.1042/Bj20082441.
- Westrop, G. D., Goodall, G., Mottram, J. C., and Coombs, G. H. (2006) Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine, J. Biol. Chem., 281, 25062-25075, https://doi.org/10.1074/jbc.M600688200.
- Mino, K., and Ishikawa, K. (2003) Characterization of a novel thermostable O-acetylserine sulfhydrylase from Aeropyrum pernix Kl., J. Bacteriol., 185, 2277-2284, https://doi.org/10.1128/JB.185.7.2277-2284.2003.
- Bonner, E. R., Cahoon, R. E., Knapke, S. M., and Jez, J. M. (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana, J. Biol. Chem., 280, 38803-38813, https://doi.org/10.1074/jbc.M505313200.
- Mino, K., Yamonoue, T., Sakiyama, T., Eisaki, N., Matsuyama, A., and Nakanishi, K. (2000) Effects of bienzyme complex formation of cysteine synthetase from Escherichia coli on some properties and kinetics, Biosci. Biotechnol. Biochem., 64, 1628-1640, https://doi.org/10.1271/bbb.64.1628.
- Harun-Ur-Rashid, M., Oogai, S., Parvee, S., Inafuk, M., Iwasak, H., Fukut, M., Amzad Hossai, M., and Oku, H. (2019) Molecular cloning of putative chloroplastic cysteine synthase in Leucaena leucocephala, J. Plant Res., 133, 95-108, https://doi.org/10.1007/s10265-019-01158-y.
- Sowerby, K., Freitag-Pohl, S., Murillo, A. M., Silber, A. M., and Pohl, E. (2023) Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis, Acta Crystallogr. D Struct. Biol., 79, 518-530, https://doi.org/10.1107/S2059798323003613.
- Ma, W., Wang, J., Li, Y., and Wang, X. (2019) Cysteine synthase A overexpression in Corynebacterium glutamicum enhances l-isoleucine production, Biotechnol. Appl. Biochem., 66, 74-81, https://doi.org/10.1002/bab.1698.
- Yamamoto, K., Oshima, T., Nonaka, G., Ito, H., and Ishihama, A. (2011) Induction of the Escherichia coli cyst gene by genetic and environmental factors, FEMS Microbiol. Lett., 323, 88-95, https://doi.org/10.1111/j.1574-6968.2011.02364.x.
- Kaundal, S., Uttam, M., and Thakur, K. G. (2016) Dual role of a biosynthetic enzyme, Cysk, in contact dependent growth inhibition in bacteria, PLoS One, 11, e0159844, https://doi.org/10.1371/journal.pone.0159844.
- Kaushik, A., Rahisuddin, R., Saini, N., Singh, R. P., Kaur, R., Koul, S., and Kumaran, S. (2021) Molecular mechanism of selective substrate engagement and inhibitor disengagement of cysteine synthase, J. Biol. Chem., 296, 100041, https://doi.org/10.1074/jbc.RA120.014490.
- Hara, S., Payne, M. A., Schnackerz, K. D., and Cook, P. F. (1990) A rapid purification procedure and computer-assisted sulfide ion selective electrode assay for 0-acetylserine sulfhydrylase from Salmonella typhimurium, Protein Express Purif., 1, 70-76, https://doi.org/10.1016/1046-5928(90)90048-4.
- Römer, S., D'Harlingue, A., Camara, B., Schantz, R., and Kuntz, M. (1992) Cysteine synthase from Capsicum annuum chromoplasts: Characterization and cDNA cloning of an up-regulated enzyme during fruit development, J. Biol. Chem., 267, 17966-17970, https://doi.org/10.1016/S0021-9258(19)37137-6.
- Amori, L., Katkevica, S., Bruno, A., Campanini, B., Felici, P., Mozzarelli, A., and Costantino, G. (2012) Design and synthesis of trans-2-substituted-cyclopropane-1-carboxylic acids as the first non-natural small molecule inhibitors of 0-acetylserine sulfhydrylase, Medchemcomm, 3, 1111-1116, https://doi.org/10.1039/c2md20100c.
- Owais, W. M., and Gharaibeh, R. (1990) Cloning of the E. coli 0-acetylserine sulfhydrylase gene: ability of the clone to produce a mutagenic product from azide and 0-acetylserine, Mutat. Res., 245, 151-155, https://doi.org/10.1016/0165-7992(90)90043-J.
- Hicks, J. L., Oldham, K. E. A., McGarvie, J., and Walker, E. J. (2022) Combating antimicrobial resistance via the cysteine biosynthesis pathway in bacterial pathogens, Biosci. Rep., 42, BSR20220368, https://doi.org/10.1042/BSR20220368.
- Rahman, A., Ono, K., Toyomoto, T., Hanaoka, K., and Sawa, T. (2025) Identification of fungal metabolite gliotoxin as a potent inhibitor against bacterial 0-acetylserine sulfhydrylase Cysk and CysM, Int. J. Mol. Sci., 26, 1106, https://doi.org/10.3390/jjms26031106.
- Marchetti, M., De Angelis, F. S., Annunziato, G., Constantino, G., Pieroni, M., Ronda, L., Mozarelli, A., Campanini, B., Cannistraro, S., Bizzarri, A. R., and Betatti, S. A. (2021) A competitive o-acetylserine sulfhydrylase inhibitor modulates the formation of cysteine synthase complex, Catalysts, 11, 700, https://doi.org/10.3390/catal11060700.
- Kant, V., Vijayakumar, S., Sahoo, G. C., Ali, V., Singh, R., Chaudhery, S. S., and Das, P. (2019) In silico screening and validation of high-affinity tetra-peptide inhibitor of Leishmania donovani 0-acetyl serine sulfhydrylase (OASS), J. Biomol. Struct. Dyn., 37, 481-492, https://doi.org/10.1080/07391102.2018.1429315.
- Shirzadian-Khorramabad, R., Jing, H. C., Everts, G. E., Schippers, J. H. M., Hille, J., and Djikwel, P. P. (2010) A mutation in the cytosolic 0-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis, BMC Plant Biol., 10, 80, https://doi.org/10.1186/1471-2229-10-80.
- Awano, N., Wada, M., Mori, H., Nakamori, S., and Takagi, H. (2005) Identification and functional analysis of Escherichia coli cysteine desulfhydrases, Appl. Environ. Microbiol., 71, 4149-4152, https://doi.org/10.1128/AEM.71.7.4149-4152.2005.
- Hohman, J. L., Yamamoto, K., and Oshima, T. (2007) Transcriptomic responses of bacterial cells to sublethal metal ion stress, Mol. Biol. Heavy Metals, 6, 73-115, https://doi.org/10.1007/7171_2006_074.
- Rosa, B., Marchetti, M., Paredi, G., Amenitsch, H., Franko, N., Benoni, R., Giabhai, B., De Marino, M. G., Mozzarelli, A., Ronda, L., Storici, P., Campanini, B., and Betatti, S. (2019) Combination of SAXS and protein painting discloses the three-dimensional organization of the bacterial cysteine synthase complex, a potential target for enhancers of antibiotic action, Int. J. Mol. Sci., 20, 5219, https://doi.org/10.3390/jjms20205219.
- Salsi, E., Campanini, B., Betatti, S., Raboni, S., Roderick, S. L., Cook, P. F., and Mozzarelli, A. (2010) A two-step process controls the formation of the bienzyme cysteine synthase complex, J. Biol. Chem., 285, 12813-12822, https://doi.org/10.1074/jbc.M109.075762.
- Spyrakis, F., Singh, R., Gozzini, P., Campanini, B., Salsi, E., Felici, P., Raboni, S., Benedetti, P., Gruciani, G., Kellogg, G., Cook, P. F., and Mozzarelli, A. (2013) Isozyme-specific ligands for 0-acetylserine sulfhydrylase, a novel antibiotic target, PLoS One, 8, e77558, https://doi.org/10.1371/journal.pone.0077558.
- Francois, J.A., Kumaran, S., and Jez, J. M. (2006) Structural basis for interaction of 0-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex, Plant Cell, 18, 3647-3655, https://doi.org/10.1105/tpc.106.047316.
- Singh, R. P., Saini, N., Sharma, G., Rahisuddin, R., Patel, M., Kaushik, A., and Kumaran, S. (2021) Moonlighting biochemistry of cysteine synthase: a species-specific global regulator, J. Mol. Biol., 433, 167255, https://doi.org/10.1016/j.jmb.2021.167255.
- Raj, I., Kumar, S., and Gourinath, S. (2012) The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences, Acta Crystallogr. D Biol. Crystallogr., 68, 909-919, https://doi.org/10.1107/S0907444912016459.
- Soutourina, O., Poupel, O., Coppée, J.Y., Danchin, A., Msadek, T., and Martin-Verstraete, I. (2009) CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation, Mol. Microbiol., 73, 194-211, https://doi.org/10.1111/j.1365-2958.2009.06760.x.
- Dharavath, S., Raj, I., and Gourinath, S. (2017) Structure-based mutational studies of O-acetylserine sulfhydrylase reveal the reason for the loss of cysteine synthase complex formation in Brucella abortus, Biochem. J., 474, 1221-1239, https://doi.org/10.1042/BCJ20161062.
- Benoni, R., Beck, C. M., Garza-Sánchez, F., Bettati, S., Mozzarelli, A., Hayes, C. S., and Campanini, B. (2017) Activation of an anti-bacterial toxin by the biosynthetic enzyme Cysk: mechanism of binding, interaction specificity and competition with cysteine synthase, Sci. Rep., 7, 8817, https://doi.org/10.1038/s41598-017-09022-6.
- Johnson, P. M., Beck, C. M., Morse, R. P., Garza-Sánchez, F., Low, D. A., Hayes, C. S., and Goulding, C. W. (2016) Unraveling the essential role of Cysk in CDI toxin activation, Proc. Natl. Acad. Sci. USA, 113, 9792-9797, https://doi.org/10.1073/pnas.1607112113.
- Feng, Z., Yashiro, Y., and Tomita, K. (2024) Mechanism of activation of contact-dependent growth inhibition tRNAs toxin by the amino acid biogenesis factor Cysk in the bacterial competition system, Nucleic Acids Res., 53, gkae735, https://doi.org/10.1093/nar/gkae735.
- Peng, H., Shen, J., and Edmonds, K. A. (2017) Sulfide homeostasis and nitroxyl intersect via formation of reactive sulfur species in Staphylococcus aureus, nSphere, 2, 1-21, https://doi.org/10.1128/mSphere.00082-17.
- Frávega, J., Álvarez, R., Díaz, F., Inostroza, O., Tejías, C., Rodas, P. I., Paredes-Sabja, D., et al. (2016). Salmonella typhimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a Cysk-dependent manner, J. Antimicrob. Chemother., 71, 3409-3415, https://doi.org/10.1093/jac/dkw311.
- Hullo, M. F., Auger, S., Soutourina, O., Barzu, O., Yvon, M., Danchin, A., et al. (2007) Conversion of methionine to cysteine in Bacillus subtilis and its regulation, J. Bacteriol., 189, 187-197, https://doi.org/10.1128/JB.01273-06.
- Tanous, C., Soutourina, O., Raynal, B., Hullo, M. F., Mervelet, P., Gilles, A. M., Noirot, P., Danchin, A., England, P., and Martin-Verstraete, I. (2008) The CymR regulator in complex with the enzyme Cysk controls cysteine metabolism in Bacillus subtilis, J. Biol. Chem., 283, 35551-35560, https://doi.org/10.1074/jbc.M805951200.
- Talvenmäki, H., Lallukka, N., Survo, S., and Romantschuk, M. (2019) Fenton's reaction-based chemical oxidation in suboptimal conditions can lead to mobilization of oil hydrocarbons but also contribute to the total removal of volatile compounds, Environ. Sci. Pollut. Res. Int., 26, 34670-34684, https://doi.org/10.1007/s11356-019-06547-3.
- Singh, P., Brooks, J. F., Ray, V. A., Mandel, M. J., and Visick, K. L. (2015) Cysk plays a role in biofilm formation and colonization by Vibrio fischeri, Appl. Environ. Microbiol., 81, 5223-5234, https://doi.org/10.1128/AEM.00157-15.
- Elebiju, O. F., Oduselu, G. O., Ogunnupebi, T. A., Ajani, O. O., and Adebiyi, E. (2024) In silico design of potential small-molecule antibiotic adjuvants against Salmonella typhimurium ortho acetyl sulfhydrylase synthase to address antimicrobial resistance, Pharmaceuticals (Basel), 17, 543, https://doi.org/10.3390/ph17050543.
- De Foletto-Felipe M. P., Abrahão, J., Siqueira-Soares, R., de Siqueira-Soares, R. C., de Contesoto, I. C., Grizza, L. H. E., de Almeida, G. H. G., Constantin, R. P., Philippsen, G. S., Seixas, F. A. V., Bueno, P. S. A., de Oliveira, M. A. S., Constantin, R. P., dos Santos, W. D., Ferrarese-Filho, O, and Marchiosi, R. (2023) Inhibition of O-acetylserine (thiol) lyase as a promising new mechanism of action for herbicides, Plant Physiol. Biochem., 204, 108127, https://doi.org/10.1016/j.plaphy.2023.108127.
- Ben-Shushan, R. S., Cohen, E., Ben-Naim, N., Amram, E., Gressel, J., Peleg, D., Dotan, N., Bloch, I., and Gal, M. (2024) Discovering new mode-of-action pesticide leads inhibiting protein-protein interactions: example targeting plant O-acetylserine sulfhydrylase, Pest. Manag. Sci., 80, 6424-6436, https://doi.org/10.1002/ps.8372.
- Savinova, O. S., Glazunova, O. A., Moiseenko, K. V., Begunova, A. V., Rozhkova, I. V., and Fedorova, T. V. (2021) Exoproteome analysis of antagonistic interactions between the probiotic bacteria Limosilactobacillus reuteri LRI and Laeticoseibacillus rhamnosus F and multidrug resistant strain of Klebsiella pneumonia, Int. J. Mol. Sci., 22, 10999, https://doi.org/10.3390/ijms222010999.
- Nakamura, T., Iwahashi, H., and Eguchi, Y. (1984) Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium, J. Bacteriol., 158, 1122-1127, https://doi.org/10.1128/jb.158.3.1122-1127.1984.
- Nakamura, T., Kon, Y., Iwahashi, H., and Eguchi, Y. (1983) Evidence that thiosulfate assimilation by Salmonella typhimurium is catalyzed by cysteine synthase B, J. Bacteriol., 156, 656-662, https://doi.org/10.1128/jb.156.2.656-662.1983.
- Hulanicka, M. D., Hallquist, S. G., Kredich, N. M., and Mojica, T. (1979) Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium, J. Bacteriol., 140, 141-146, https://doi.org/10.1128/jb.140.1.141-146.1979.
- Hitchcock, N., Kelly, D. J., Hitchcock, A., and Taylor, A. J. (2023) Cysteine biosynthesis in Campylobacter jejuni: substrate specificity of CysM and the dualism of sulfide, Biomolecules, 13, 86, https://doi.org/10.3390/biom13010086.
- Salsi, E., Guan, R., Campanini, B., Bettati, S., Lin, J., Cook, P. F., and Mozzarelli, A. (2011) Exploring O-acetylserine sulfhydrylase-B isoenzyme from Salmonella typhimurium by fluorescence spectroscopy, Arch. Biochem. Biophys., 505, 178-185, https://doi.org/10.1016/j.abb.2010.10.005.
- Agren, D., Schnell, R., Oehlmann, W., Singh, M., and Schneider, G. (2008) Cysteine synthase (CysM) of Mycobacterium tuberculosis is an O-phosphoserine sulfhydrylase: evidence for an alternative cysteine biosynthesis pathway in mycobacteria, J. Biol. Chem., 283, 31567-31574, https://doi.org/10.1074/jbc.M804877200.
- Burns-Huang, K., and Mundhra, S. (2019) Mycobacterium tuberculosis cysteine biosynthesis genes meet-cysto-cysM confer resistance to clofazimine, Tuberculosis (Edith), 115, 63-66, https://doi.org/10.1016/j.tube.2019.02.002.
- Jurgenson, C. T., Burns, K. E., Begley, T. P., and Falick, S. E. (2008) Crystal structure of a sulfur carrier protein complex found in the cysteine biosynthetic pathway of Mycobacterium tuberculosis, Biochemistry, 47, 10354-10364, https://doi.org/10.1021/b1800915j.
- Smirnova, G. V., Tyulenev, A. V., Bezmaternykh, K. V., Muzyka, N. G., Ushakov, V. Y., and Oktyabrsky, O. N. (2019) Cysteine homeostasis under inhibition of protein synthesis in Escherichia coli cells, Amino Acids, 51, 1577-1592, https://doi.org/10.1007/s00726-019-02795-2.
- Guan, R., Nimmo, S. A., Schnackerz, K. D., and Cook, P. F. (2009) 31P NMR studies of O-acetylserine sulfhydrylase-B from Salmonella typhimurium, Arch. Biochem. Biophys., 487, 85-90, https://doi.org/10.1016/j.abb.2009.05.016.
- Lynch, M. J., and Crane, B. R. (2019) Design, validation, and application of an enzyme-coupled hydrogen sulfide detection assay, Biochemistry, 58, 474-483, https://doi.org/10.1021/acs.biochem.8b01083.
- Zocher, G., Wiesand, U., and Schulz, G. E. (2007) High resolution structure and catalysis of O-acetylserine sulfhydrylase isozyme B from Escherichia coli, FEBS J., 274, 5382-5389, https://doi.org/10.1111/j.1742-4658.2007.06063.x.
- Bermúdez, M. A., Páez-Ochoa, M. A., Gotor, C., and Romero, L. C. (2010) Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control, Plant Cell, 22, 403-416, https://doi.org/10.1105/tpc.109.071985.
- Gotor, C., and Romero, L. C. (2013) S-sulfocysteine synthase function in sensing chloroplast redox status, Plant Signal. Behav., 8, 8-10, https://doi.org/10.4161/psb.23313.
Дополнительные файлы


