ION TRANSPORTERS GENE EXPRESSION IN GILLS AND INTESTINE OF MALE AND FEMALE THREESPINED STICKLEBACKS DURING FRESHWATER ADAPTATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In euryhaline fish species, including the three-spined stickleback, a key physiological response to freshwater adaptation aimed at maintaining osmotic homeostasis is the enhancement of ion uptake from the environment and the reduction of ion loss. The hormone prolactin, a central regulator of this process, primarily targets the gills and intestine. Our previous work demonstrated that, in a model of freshwater adaptation in sticklebacks, prolactin expression and the sensitivity of osmoregulatory tissues to prolactin differ between males and females. In the present study, we measured the expression levels of genes encoding the α1a and α3a subunits of Na+/K+-ATPase, as well as ion transporters NKCC1a, NKCC2, NCC, and NHE2, in the gill and intestinal tissues of male and female three-spined sticklebacks (Gasterosteus aculeatus L.) under conditions of acute (24 h) and chronic (72 h) freshwater adaptation, relative to control conditions. During freshwater adaptation, females – but not males – exhibited increased intestinal expression of nhe2 and atp1a3 (as well as the atp1a1/atp1a3 expression ratio), and nkcc1a, along with decreased expression of nkcc2. In contrast, only males showed an increase in ncc expression in the intestine. In both sexes, freshwater exposure led to a significant decrease in nkcc1a expression in the gills. These findings support our hypothesis of sex-dependent plasticity in osmoregulatory function in sticklebacks, with females exhibiting a more pronounced response. This pattern further aligns with previously reported stronger activation of the prolactin axis in females under freshwater adaptation conditions.

About the authors

N. S Pavlova

Lomonosov Moscow State University

Email: pav.nad.ser@gmail.com
Biological Faculty, Department of Human and Animal Physiology Moscow, Russia

T. V Neretina

Lomonosov Moscow State University

Biological Faculty, Pertsov White Sea Biological Station Russia

O. V Smirnova

Lomonosov Moscow State University

Biological Faculty, Department of Human and Animal Physiology

References

  1. McCormick, S. D. (2011) The hormonal control of osmoregulation in teleost fish, Life Sci., 1, 1466-1473, https://doi.org/10.1016/B978-0-12-374553-8.00212-4.
  2. Zhu, T., and Li, W. (2024) The regulation of prolactin secretion and its targeting function of teleost, Gen. Comp. Endocrinol., 354, 114530, https://doi.org/10.1016/j.ygcen.2024.114530.
  3. Pierce, A. L., Fox, B. K., Davis, L. K., Visitation, N., Kitahashi, T., Hirano, T., and Grau, E. G. (2007) Prolactin receptor growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting, Gen. Comp. Endocrinol., 154, 31-40, https://doi.org/10.1016/j.ygcen.2007.06.023.
  4. Zhang, Y., Long, Z., Li, Y., Yi, S., Shi, Y., Ma, X., Huang, W., Lu, D., Zhu, P., Liu, X., Meng, Z., Huang, X., Cheng, C. H. K., and Lin, H. (2010) The second prolactin receptor in Nile tilapia (Oreochromis niloticus): molecular characterization, tissue distribution and gene expression, Fish. Physiol. Biochem., 36, 283-295, https://doi.org/10.1007/s10695-009-9355-1.
  5. Lee, K. M., Kaneko, T., Katoh, F., and Aida, K. (2006) Prolactin gene expression and gill chloride cell activity in fugu Takifugu rubripes exposed to a hypoosmotic environment, Gen. Comp. Endocrinol., 149, 285-293, https://doi.org/10.1016/j.ygcen.2006.06.009.
  6. Santos, C. R., Ingleton, P. M., Cavaco, J. E., Kelly, P. A., Edery, M., and Power, D. M. (2001) Cloning, characterization, and tissue distribution of prolactin receptor in the sea bream (Sparus aurata), Gen. Comp. Endocrinol., 121, 32-47, https://doi.org/10.1006/gcen.2000.7553.
  7. Higashimoto, Y., Nakao, N., Ohkubo, T., Tanaka, M., and Nakashima, K. (2001) Structure and tissue distribution of prolactin receptor mRNA in Japanese flounder (Paralichys olivaceus): conserved and preferential expression in osmoregulatory organs, Gen. Comp. Endocrinol., 123, 170-179, https://doi.org/10.1006/gcen.2001.7660.
  8. Hasan, M. M., DeFaveri, J., Kuure, S., Dash, S. N., Lehtonen, S., Merila, J., and McCairns, R. J. S. (2017) Sticklebacks adapted to divergent osmotic environments show differences in plasticity for kidney morphology and candidate gene expression, J. Exp. Biol., 220, 2175-2186, https://doi.org/10.1242/jeb.146027.
  9. Taugbol, A., Solbakken, M. H., Jakobsen, K. S., and Vollestad, L. A. (2022) Salinity-induced transcriptome profiles in marine and freshwater threespine stickleback after an abrupt 6-hour exposure, Ecol. Evol., 12, e9395, https://doi.org/10.1002/ece3.9395.
  10. Pavlova, N. S., Neretina, T. V., and Smirnova, O. V. (2024) Expression of prolactin axis genes in the three-spined stickleback G. aculeatus L.: sex dependence and freshwater adaptation, J. Evol. Biochem. Physiol., 60, 1909-1919, https://doi.org/10.1134/S0022093024050211.
  11. Hwang, P. P., Lee, T. H., and Lin, L. Y. (2011) Ion regulation in fish gills, Am. J. Physiol. Integr. Comp. Physiol., 301, R28-R47, https://doi.org/10.1152/ajpregu.00047.2011.
  12. Evans, D. H., Piermarini, P. M., and Choe, K. P. (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste, Physiol. Rev., 85, 97-177, https://doi.org/10.1152/physrev.00050.2003.
  13. Richards, J. G., Semple, J. W., Bystriansky, J. S., and Schulte, P. M. (2003) Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer, J. Exp. Biol., 206, 4475-4486, https://doi.org/10.1242/jeb.00701.
  14. Mackie, P., Wright, P. A., Glebe, B. D., and Ballantyne, J. S. (2005) Osmoregulation and gene expression of Na+/K+ ATPase in families of Atlantic salmon (Salmo salar) smolts, Can. J. Fish. Aquat. Sci., 62, 2661-2672, https://doi.org/10.1139/f05-168.
  15. Bystriansky, J. S., Richards, J. G., Schulte, P. M., and Ballantyne, J. S. (2006) Reciprocal expression of gill Na+/K+-ATPase α-subunit isoforms at a and d1 during seawater acclimation of three salmonid fishes that vary in their salinity tolerance, J. Exp. Biol., 209, 1848-1858, https://doi.org/10.1242/jeb.02188.
  16. Madsen, S. S., Killerich, P., and Tipsmark, C. K. (2009) Multiplicity of expression of Na+, K+-ATPase α-subunit isoforms in the gill of Atlantic salmon (Salmo salar): cellular localisation and absolute quantification in response to salinity change, J. Exp. Biol., 212, 78-88, https://doi.org/10.1242/jeb.024612.
  17. McCormick, S. D., Regish, A. M., and Christensen, A. K. (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon, J. Exp. Biol., 212, 3994-4001, https://doi.org/10.1242/jeb.037275.
  18. Tipsmark, C. K., Breves, J. P., Seale, A. P., Lerner, D. T., Hirano, T., and Grau, E. G. (2011) Switching of Na+, K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish, J. Endocrinol., 209, 237-244, https://doi.org/10.1530/JOE-10-0495.
  19. McCormick, S. D., Regish, A. M., Christensen, A. K., and Björnsson, B. T. (2013) Differential regulation of sodium-potassium pump isoforms during smolt development and seawater exposure of Atlantic salmon, J. Exp. Biol., 216, 1142-1151, https://doi.org/10.1242/jeb.080440.
  20. Hiroi, J., and McCormick, S. D. (2007) Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl--cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar, J. Exp. Biol., 210, 1015-1024, https://doi.org/10.1242/jeb.002030.
  21. Katoh, F., Cozzi, R. R. F., Marshall, W. S., and Goss, G. G. (2008) Distinct Na+/K+/2Cl--cotransporter localization in kidneys and gills of two euryhaline species, rainbow trout and killifish, Cell. Tissue. Res., 334, 265-281, https://doi.org/10.1007/s00441-008-0679-4.
  22. Lorin-Nebel, C., Boulo, V., Bodinier, C., and Charmantier, G. (2006) The Na+/K+/2Cl--cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation, J. Exp. Biol., 209, 4908-4922, https://doi.org/10.1242/jeb.02591.
  23. Wu, Y. C., Lin, L. Y., and Lee, T. H. (2003) Na+, K+, 2Cl--cotransporter: a novel marker for identifying freshwater-and seawater-type mitochondria-rich cells in gills of the euryhaline tilapia, Oreochromis mossambicus, Zool. Stud., 42, 1, 186-192.
  24. Inokuchi, M., Hiroi, J., Watanabe, S., Lee, K. M., and Kaneko, T. (2008) Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities, Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 151, 151-158, https://doi.org/10.1016/j.cbpa.2008.06.012.
  25. Hiroi, J., Yasumasi, S., McCormick, S. D., Hwang, P. P., and Kaneko, T. (2008) Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish, J. Exp. Biol., 211, 2584-2599, https://doi.org/10.1242/jeb.018663.
  26. Breves, J. P., Watanabe, S., Kaneko, T., Hirano, T., and Grau, E. G. (2010) Prolactin restores branchial mitochondrion-rich cells expressing Na+/Cl- cotransporter in hypophysectomized Mozambique tilapia, Am. J. Physiol. Integr. Comp. Physiol., 299, 702-710, https://doi.org/10.1152/ajpregu.00213.2010.
  27. Watanabe, S., Itoh, K., and Kaneko, T. (2016) Prolactin and cortisol mediate the maintenance of hyperosmoregulatory ionocytes in gills of Mozambique tilapia: exploring with an improved gill incubation system, Gen. Comp. Endocrinol., 232, 151-159, https://doi.org/10.1016/j.ygcen.2016.04.024.
  28. Breves, J. P., Puterbaugh, K. M., Bradley, S. E., Hageman, A. E., Verspyck, A. J., Shaw, L. H., Danielson, E. C., and Hou, Y. (2022) Molecular targets of prolactin in mummichogs (Fundulus heteroclitus): ion transporters/channels, aquaporins, and claudins, Gen. Comp. Endocrinol., 325, 114051, https://doi.org/10.1016/j.ygcen.2022.114051.
  29. Bossus, M. C., Bollinger, R. J., Reed, P. J., and Tipsmark, C. K. (2017) Prolactin and cortisol regulate branchial claudin expression in Japanese medaka, Gen. Comp. Endocrinol., 240, 77-83, https://doi.org/10.1016/j.ygcen.2016.09.010.
  30. Rendakov, N. L. (2021) Ionocyte functions and hormonal regulation of ion exchange in fish, Biol. Bull. Rev., 11, 616-631, https://doi.org/10.1134/S2079086421060074.
  31. Scott, G. R., Claiborne, J. B., Edwards, S. L., Schulte, P. M., and Wood, C. M. (2005) Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport, J. Exp. Biol., 208, 2719-2729, https://doi.org/10.1242/jeb.01688.
  32. Kelly, S. P., Chow, I. N., and Woo, N. Y. (1999) Effects of prolactin and growth hormone on strategies of hyposomatic adaptation in a marine teleost, Sparus sarba, Gen. Comp. Endocrinol., 113, 9-22, https://doi.org/10.1006/gcen.1998.7159.
  33. Peter, M. C. S., Mini, V. S., Bindulekha, D. S., and Peter, V. S. (2014) Short-term in situ effects of prolactin and insulin on ion transport in liver and intestine of freshwater climbing perch (Anabas testudineus Bloch), J. Endocrinol. Reprod., 18, 47-58.
  34. Seale, A. P., Stagg, J. J., Yamaguchi, Y., Breves, J. P., Soma, S., Watanabe, S., Kaneko, T., Cnaani, A., Harpaz, S., Lerner, D. T., and Grau, E. G. (2014) Effects of salinity and prolactin on gene transcript levels of ion transporters, ion pumps and prolactin receptors in Mozambique tilapia intestine, Gen. Comp. Endocrinol., 206, 146-154, https://doi.org/10.1016/j.ygcen.2014.07.020.
  35. Vargas-Lagos, C., Pontigo, J. P., Oyarzun, R., Soto-Dávila, M., Morera, F. J., Yáñez, A. J., and Vargas-Chacoff, L. (2018) Intestinal incomplete process on the osmoregulation system during Salmo salar smoltification in a productive conditions, Aquaculture, 491, 121-127, https://doi.org/10.1016/j.aquaculture.2018.03.022.
  36. Cutler, C. P., and Cramb, G. (2002) Two isoforms of the Na+/K+/2Cl- cotransporter are expressed in the European eel (Anguilla anguilla), Biochim. Biophys. Acta (BBA)-Biomembranes, 1566, 92-103, https://doi.org/10.1016/S0005-2736(02)00596-5.
  37. Cutler, C. P., and Cramb, G. (2008) Differential expression of absorptive intestinal and renal tissues of the cation-chloride-cotransporters in the European eel (Anguilla anguilla), Comp. Biochem. Physiol. B Biochem. Mol. Biol., 149, 63-73, https://doi.org/10.1016/j.cbpb.2007.08.007.
  38. Watanabe, S., Mekuchi, M., Ideuchi, H., Kim, Y. K., and Kaneko T. (2011) Electroneutral cation-Cl- cotransporters NKCC2β and NCCβ expressed in the intestinal tract of Japanese eel Anguilla japonica, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 159, 427-435, https://doi.org/10.1016/j.cbpa.2011.04.009.
  39. Barany, A., Shaughnessy, C. A., Pelis, R. M., Fuentes, J., Mancera, J. M., and McCormick, S. D. (2021) Tissue and salinity specific Na+/Cl- cotransporter (NCC) orthologues involved in the adaptive osmoregulation of sea lamprey (Petromyzon marinus), Sci. Rep., 11, 22698, https://doi.org/10.1038/s41598-021-02125-1.
  40. Aguirre, W. E., Reid, K., Rivera, J., Heins, D. C., Veeramah, K. R., and Bell, M. A. (2022) Freshwater colonization, adaptation, and genomic divergence in threespine stickleback Integr. Comp. Biol., 62, 388-405, https://doi.org/10.1093/icb/icac071.
  41. Pavlova, N. S., Neretina, T. V., and Smirnova, O. V. (2020) Dynamics of prolactin axis genes in the brain of male and female three-spined stickleback Gasterosteus aculeatus (Gasterostaiidae) during short-term freshwater adaptation, J. Ichthyol., 60, 299-304, https://doi.org/10.1134/S0032945220020150.
  42. Pavlova, N. S., Gizatulina, A. R., Neretina, T. V., and Smirnova, O. V. (2022) Expression of opsin genes in the retina of female and male three-spined sticklebacks Gasterosteus aculeatus L.: effect of freshwater adaptation and prolactin administration, Biochemistry (Moscow), 87, 215-224, https://doi.org/10.1134/S0006297922030038.
  43. Hibbeler, S., Scharsack, J. P., and Becker, S. (2008) Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus, BMC Mol. Biol., 9, 1-10, https://doi.org/10.1186/1471-2199-9-18.
  44. Yang, W. K., Chao, T. L., Chuang, H. J., Hu, Y. C., Lorin-Nebel, C., Blondeau-Bidet, E., Wu, W. Y., Tang, C. H., and Tsalf, S.-C., and Leea, T.-H. (2010) Gene expression of Na+/K+-ATPase α-isoforms and FYXD proteins and potential modulatory mechanisms in euryhaline milkfish kidneys upon hypoosmotic challenges, Aquaculture, 504, 59-69, https://doi.org/10.1016/j.aquaculture.2019.01.046.
  45. Bollinger, R. J., Madsen, S. S., Bossus, M. C., and Tipsmark, C. K. (2016) Does Japanese medaka (Oryzias latipes) exhibit a gill Na+/K+-ATPase isoform switch during salinity change? J. Comp. Physiol. B, 186, 485-501, https://doi.org/10.1007/s00360-016-0972-6.
  46. Taugbol, A., Arntsen, T., Ostbye, K., and Vallestad, L. A. (2014) Small changes in gene expression of targeted osmoregulatory genes when exposing marine and freshwater threespine stickleback (Gasterosteus aculeatus) to abrupt salinity transfers, PLoS One, 9, e106894, https://doi.org/10.1371/journal.pone.0106894.
  47. Zhang, K., Zhang, X., Wen, H., Qi, X., Fan, H., Tian, Y., Liu, Y., and Li, Y. (2019) Spotted sea bass (Lateolabrax maculatus) cfrr, nkcc1a, nkcc1b and nkcc2: genome-wide identification, characterization and expression analysis under salinity stress, J. Ocean. Univ. China, 18, 1470-1480, https://doi.org/10.1007/s11802-019-4114-0.
  48. Brix, K. V., Esbaugh, A. J., Mager, E. M., and Grosell, M. (2015) Comparative evaluation of Na+ uptake in Cyprinodon variegatus variegatus (Lacepede) and Cyprinodon variegatus hubbsi (Carr) (Cyprinodontiformes, Telcostei): evaluation of NHE function in high and low Na+ freshwater, Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 185, 115-124, https://doi.org/10.1016/j.cbpa.2015.04.002.
  49. Gao, J., Nie, Z., Xu, G., and Xu, P. (2022) Genome-wide identification of the NHE gene family in Coilia nasus and its response to salinity challenge and ammonia stress, BMC Genomics, 23, 526, https://doi.org/10.1186/s12864-022-08761-9.
  50. Genz, J., Esbaugh, A. J., and Grosell, M. (2011) Intestinal transport following transfer to increased salinity in an anadromous fish (Oncorhynchus mykiss), Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 159, 150-158, https://doi.org/10.1016/j.cbpa.2011.02.011.
  51. Guh, Y. J., Lin, C. H., and Hwang, P. P. (2015) Osmoregulation in zebrafish: ion transport mechanisms and functional regulation, EXCLI J., 14, 627, https://doi.org/10.17179/excli2015-246.
  52. Velando, A., Costa, M. M., and Kim, S. Y. (2017) Sex-specific phenotypes and metabolism-related gene expression in juvenile sticklebacks, Behav. Ecol., 28, 1553-1563, https://doi.org/10.1093/beheco/arx129.
  53. Mancera, J. M., and McCormick, S. D. (2019) Role of prolactin, growth hormone, insulin-like growth factor I and cortisol in teleost osmoregulation, Fish Osmoregul., 497-515, https://doi.org/10.1201/b10994-17.
  54. Kusakabe, M., Ishikawa, A., and Kitano, J. (2014) Relaxin-related gene expression differs between anadromous and stream-resident stickleback (Gasterosteus aculeatus) following seawater transfer, Gen. Comp. Endocrinol., 205, 197-206, https://doi.org/10.1016/j.ygcen.2014.06.017.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».