Фотосинтетический контроль и его участие в защите фотосистемы I от фотоингибирования
- Авторы: Вильянен Д.В.1, Козулева М.А.1
-
Учреждения:
- Институт фундаментальных проблем биологии РАН Федерального исследовательского центра "Пущинский научный центр биологических исследований РАН"
- Выпуск: Том 90, № 7 (2025): Новые достижения в фотобиохимии и фотобиофизике (специальный выпуск)
- Страницы: 915-936
- Раздел: Статьи
- URL: https://journals.rcsi.science/0320-9725/article/view/356220
- DOI: https://doi.org/10.31857/S0320972525070034
- EDN: https://elibrary.ru/JZCKHS
- ID: 356220
Цитировать
Аннотация
В обзоре поднимается вопрос о фотосинтетическом контроле как о защитном механизме, предотвращающем фотоингибирование фотосистемы I в условиях дисбаланса между ассимиляцией CO2 в ходе цикла Кальвина–Бенсона–Бассама и световыми реакциями в фотосинтетическом аппарате тилакоидов. Рассмотрены пути фотоингибирования фотосистемы I и описаны защитные механизмы, предотвращающие её повреждение на свету. Проанализирована pH-чувствительность окисления пластохинола в хинол-окисляющем сайте цитохромного b6f-комплекса и описано функционирование двух каналов, выводящих протоны в люмен тилакоида из цитохромного b6f-комплекса. Рассмотрено влияние активации фотосинтетического контроля на функционирование самого цитохромного b6f-комплекса и предложена гипотеза о влиянии фотосинтетического контроля на образование активных форм кислорода в фотосистеме I.
Об авторах
Д. В. Вильянен
Институт фундаментальных проблем биологии РАН Федерального исследовательского центра "Пущинский научный центр биологических исследований РАН"
Автор, ответственный за переписку.
Email: marina.kozuleva@pbcras.ru
Пущино
М. А. Козулева
Институт фундаментальных проблем биологии РАН Федерального исследовательского центра "Пущинский научный центр биологических исследований РАН"
Email: marina.kozuleva@pbcras.ru
Пущино
Список литературы
- Terashima, I., Funayama, S., and Sonoike, K. (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II, Planta, 193, 300-306, https://doi.org/10.1007/BF00192544.
- Kono, M., Oguchi, R., and Terashima, I. (2022) Photoinhibition of PSI and PSII in nature and in the laboratory: ecological approaches, in Progress in Botany (Lüttge, U., Cánovas, F. M., Risueño, M.-C., Leuschner, C., and Pretzsch, H., eds), Vol. 84, Springer Nature Switzerland, pp. 241-292, https://doi.org/10.1007/124_2022_67.
- Tikkanen, M., Grieco, M., Kangasjärvi, S., and Aro, E.-M. (2010) Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light, Plant Physiol., 152, 723-735, https://doi.org/10.1104/pp.109.150250.
- Sejima, T., Takagi, D., Fukayama, H., Makino, A., and Miyake, C. (2014) Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves, Plant Cell Physiol., 55, 1184-1193, https://doi.org/10.1093/pcp/pcu061.
- Lempiäinen, T., Rintamäki, E., Aro, E.-M., and Tikkanen, M. (2022) Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery, Plant Cell Environ., 45, 2954-2971, https://doi.org/10.1111/pce.14400.
- Lima-Melo, Y., Kılıç, M., Aro, E.-M., and Gollan, P. J. (2021) Photosystem I inhibition, protection and signalling: knowns and unknowns, Front. Plant Sci., 12, 791124, https://doi.org/10.3389/fpls.2021.791124.
- Shimakawa, G., and Miyake, C. (2018) Oxidation of P700 ensures robust photosynthesis, Front. Plant Sci., 9, 1617, https://doi.org/10.3389/fpls.2018.01617.
- Suorsa, M., Järvi, S., Grieco, M., Nurmi, M., Pietrzykowska, M., Rantala, M., Kangasjärvi, S., Paakkarinen, V., Tikkanen, M., Jansson, S., and Aro, E.-M. (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions, Plant Cell, 24, 2934-2948, https://doi.org/10.1105/tpc.112.097162.
- Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M., and Shikanai, T. (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis, Cell, 110, 361-371, https://doi.org/10.1016/S0092-8674(02)00867-X.
- Yamamoto, H., and Shikanai, T. (2019) PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides, Plant Physiol., 179, 588-600, https://doi.org/10.1104/pp.18.01343.
- Shikanai, T. (2024) Molecular genetic dissection of the regulatory network of proton motive force in chloroplasts, Plant Cell Physiol., 65, 537-550, https://doi.org/10.1093/pcp/pcad157.
- Degen, G. E., and Johnson, M. P. (2024) Photosynthetic control at the cytochrome b6f complex, Plant Cell, 36, 4065-4079, https://doi.org/10.1093/plcell/koae133.
- Hanke, G., Mulo, P. (2013) Plant type ferredoxins and ferredoxin-dependent metabolism, Plant Cell Environ., 36, 1071-1084, https://doi.org/10.1111/pce.12046.
- Davis, G. A., Rutherford, A. W., and Kramer, D. M. (2017) Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into Δψ and ΔpH, Philos. Trans. R. Soc. B Biol. Sci., 372, 20160381, https://doi.org/10.1098/rstb.2016.0381.
- Allen, J. F. (2002) Photosynthesis of ATP – electrons, proton pumps, rotors, and poise, Cell, 110, 273-276, https://doi.org/10.1016/S0092-8674(02)00870-X.
- Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K.-I., Endo, T., Tasaka, M., and Shikanai, T. (2004) Cyclic electron flow around photosystem I is essential for photosynthesis, Nature, 429, 579-582, https://doi.org/10.1038/nature02598.
- Takabayashi, A., Kishine, M., Asada, K., Endo, T., and Sato, F. (2005) Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis, Proc. Natl. Acad. Sci. USA, 102, 16898-16903, https://doi.org/10.1073/pnas.0507095102.
- Buchert, F., Mosebach, L., Gäbelein, P., and Hippler, M. (2020) PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow, Biochem. J., 477, 1631-1650, https://doi.org/10.1042/BCJ20190914.
- Sarewicz, M., Pintscher, S., Pietras, R., Borek, A., Bujnowicz, Ł., Hanke, G., Cramer, W. A., Finazzi, J., and Osyczka, A. (2021) Catalytic reactions and energy conservation in the cytochrome bc1 and b6f complexes of energy-transducing membranes, Chem. Rev., 121, 2020-2108, https://doi.org/10.1021/acs.chemrev.0c00712.
- Malone, L. A., Proctor, M. S., Hitchcock, A., Hunter, C. N., and Johnson, M. P. (2021) Cytochrome b6f – orchestrator of photosynthetic electron transfer, Biochim. Biophys. Acta Bioenerg., 1862, 148380, https://doi.org/10.1016/j.bbabio.2021.148380.
- Asada, K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons, Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 50, 601-639, https://doi.org/10.1146/annurev.arplant.50.1.601.
- Ilík, P., Pavlovič, A., Kouřil, R., Alboresi, A., Morosinotto, T., Allahverdiyeva, Y., Aro, E.-M., Yamamoto, H., and Shikanai, T. (2017) Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms, New Phytol., 214, 967-972, https://doi.org/10.1111/nph.14536.
- Wietrzynski, W., Lamm, L., Wood, W. H., Loukeri, M.-J., Malone, L., Peng, T., Johnson, M. P., and Engel, B. D. (2025) Molecular architecture of thylakoid membranes within intact spinach chloroplasts, eLife, 14, RP105496, https://doi.org/10.7554/eLife.105496.1.
- Höhner, R., Pribil, M., Herbstová, M., Lopez, L. S., Kunz, H.-H., Li, M., Wood, M., Svoboda, V., Puthiyaveetil, S., Leister, D., and Kirchhoff, H. (2020) Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants, Proc. Natl. Acad. Sci. USA, 117, 15354-15362, https://doi.org/10.1073/pnas.2005832117.
- Kozuleva, M., Petrova, A., Milrad, Y., Semenov, A., Ivanov, B., Redding, K. E., and Yacoby, I. (2021) Phylloquinone is the principal Mehler reaction site within photosystem I in high light, Plant Physiol., 186, 1848-1858, https://doi.org/10.1093/plphys/kiab221.
- Kozuleva, M. A., and Ivanov, B. N. (2010) Evaluation of the participation of ferredoxin in oxygen reduction in the photosynthetic electron transport chain of isolated pea thylakoids, Photosynth. Res., 105, 51-61, https://doi.org/10.1007/s11120-010-9565-5.
- Šnyrychová, I., Pospíšil, P., and Nauš, J. (2006) Reaction pathways involved in the production of hydroxyl radicals in thylakoid membrane: EPR spin-trapping study, Photochem. Photobiol. Sci., 5, 472-476, https://doi.org/10.1039/B514394B.
- Takagi, D., Takumi, S., Hashiguchi, M., Sejima, T., and Miyake, C. (2016) Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition, Plant Physiol., 171, 1626-1634, https://doi.org/10.1104/pp.16.00246.
- Kale, R., Sallans, L., Frankel, L. K., and Bricker, T. M. (2020) Natively oxidized amino acid residues in the spinach PS I-LHC I supercomplex, Photosynth. Res., 143, 263-273, https://doi.org/10.1007/s11120-019-00698-7.
- Mathis, P., and Setif, P. (1981) Near infra-red absorption spectra of the chlorophyll a cations and triplet state in vitro and in vivo, Isr. J. Chem., 21, 316-320, https://doi.org/10.1002/ijch.198100057.
- Caspy, I., Borovikova-Sheinker, A., Klaiman, D., Shkolnisky, Y., and Nelson, N. (2020) The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin, Nat. Plants, 6, 1300-1305, https://doi.org/10.1038/s41477-020-00779-9.
- Sonoike, K., Terashima, I., Iwaki, M., and Itoh, S. (1995) Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures, FEBS Lett., 362, 235-238, https://doi.org/10.1016/0014-5793(95)00254-7.
- Shimakawa, G., Müller, P., Miyake, C., Krieger-Liszkay, A., and Sétif, P. (2024) Photo-oxidative damage of photosystem I by repetitive flashes and chilling stress in cucumber leaves, Biochim. Biophys. Acta Bioenerg., 1865, 149490, https://doi.org/10.1016/j.bbabio.2024.149490.
- Sonoike, K. (1996) Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: possible involvement of active oxygen species, Plant Sci., 115, 157-164, https://doi.org/10.1016/0168-9452(96)04341-5.
- Sonoike, K., Kamo, M., Hihara, Y., Hiyama, T., and Enami, I. (1997) The mechanism of the degradation of psaB gene product, one of the photosynthetic reaction center subunits of Photosystem I, upon photoinhibition, Photosynth. Res., 53, 55-63, https://doi.org/10.1023/A:1005852330671.
- Sonoike, K. (2011) Photoinhibition of photosystem I, Physiol. Plant., 142, 56-64, https://doi.org/10.1111/j.1399-3054.2010.01437.x.
- Tiwari, A., Mamedov, F., Grieco, M., Suorsa, M., Jajoo, A., Styring, S., Tikkanen, M., and Aro, E.-M. (2016) Photodamage of iron-sulphur clusters in photosystem I induces non-photochemical energy dissipation, Nat. Plants, 2, 16035, https://doi.org/10.1038/nplants.2016.35.
- Tiwari, A., Mamedov, F., Fitzpatrick, D., Gunell, S., Tikkanen, M., and Aro, E.-M. (2024) Differential FeS cluster photodamage plays a critical role in regulating excess electron flow through photosystem I, Nat. Plants, 10, 1592-1603, https://doi.org/10.1038/s41477-024-01780-2.
- Furutani, R., Wada, S., Ifuku, K., Maekawa, S., and Miyake, C. (2023) Higher reduced state of Fe/S-signals, with the suppressed oxidation of P700, causes PSI inactivation in Arabidopsis thaliana, Antioxidants, 12, 21, https://doi.org/10.3390/antiox12010021.
- Subramanyam, R., Joly, D., Gauthier, A., Beauregard, M., and Carpentier, R. (2005) Protective effect of active oxygen scavengers on protein degradation and photochemical function in photosystem I submembrane fractions during light stress, FEBS J., 272, https://doi.org/10.1111/j.1742-4658.2004.04512.x.
- Petrova, A. A., Boskhomdzhieva, B. K., Milanovsky, G. E., Koksharova, O. A., Mamedov, M. D., Cherepanov, D. A., and Semenov, A. Yu. (2017) Interaction of various types of photosystem I complexes with exogenous electron acceptors, Photosynth. Res., 133, 175-184, https://doi.org/10.1007/s11120-017-0371-1.
- Shi, Q., Sun, H., Timm, S., Zhang, S., and Huang, W. (2022) Photorespiration alleviates photoinhibition of photosystem I under fluctuating light in tomato, Plants, 11, 195, https://doi.org/10.3390/plants11020195.
- Yamamoto, H., Takahashi, S., Badger, M. R., and Shikanai, T. (2016) Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis, Nat. Plants, 2, 16012, https://doi.org/10.1038/nplants.2016.12.
- Tan, S.-L., Huang, X., Li, W.-Q., Zhang, S.-B., and Huang, W. (2021) Elevated CO2 concentration alters photosynthetic performances under fluctuating light in Arabidopsis thaliana, Cells, 10, 2329, https://doi.org/10.3390/cells10092329.
- Tikkanen, M., Mekala, N. R., and Aro, E.-M. (2014) Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage, Biochim. Biophys. Acta Bioenerg., 1837, 210-215, https://doi.org/10.1016/j.bbabio.2013.10.001.
- Messant, M., Hani, U., Lai, T.-L., Wilson, A., Shimakawa, G., and Krieger-Liszkay, A. (2024) Plastid terminal oxidase (PTOX) protects photosystem I and not photosystem II against photoinhibition in Arabidopsis thaliana and Marchantia polymorpha, Plant J., 117, 669-678, https://doi.org/10.1111/tpj.16520.
- Kozuleva, M. A., and Ivanov, B. N. (2023) Superoxide anion radical generation in photosynthetic electron transport chain, Biochemistry (Moscow), 88, 1045-1060, https://doi.org/10.1134/S0006297923080011.
- Naydov, I., Kozuleva, M., Ivanov, B., Borisova-Mubarakshina, M., and Vilyanen, D. (2024) Pathways of oxygen-dependent oxidation of the plastoquinone pool in the dark after illumination, Plants, 13, 3479, https://doi.org/10.3390/plants13243479.
- Zhou, Q., Yamamoto, H., and Shikanai, T. (2022) Distinct contribution of two cyclic electron transport pathways to P700 oxidation, Plant Physiol., 192, 326-341, https://doi.org/10.1093/plphys/kiac557.
- Kono, M., and Terashima, I. (2016) Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition, Plant Cell Physiol., 57, 1405-1414, https://doi.org/10.1093/pcp/pcw103.
- Kramer, M., Rodriguez-Heredia, M., Saccon, F., Mosebach, L., Twachtmann, M., Krieger-Liszkay, A., Duffy, C., Knell, R. J., Finazzi, J., and Hanke, G. T. (2021) Regulation of photosynthetic electron flow on dark to light transition by ferredoxin:NADP(H) oxidoreductase interactions, eLife, 10, e56088, https://doi.org/10.7554/eLife.56088.
- Rodriguez-Heredia, M., Saccon, F., Wilson, S., Finazzi, G., Ruban, A. V., and Hanke, G. T. (2022) Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions, Plant Physiol., 188, 1028-1042, https://doi.org/10.1093/plphys/kiab550.
- Tikhonov, A. N. (2024) The cytochrome b6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts, Photosynth. Res., 159, 203-227, https://doi.org/10.1007/s11120-023-01034-w.
- Kurisu, G., Zhang, H., Smith, J. L., and Cramer, W. A. (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity, Science, 302, 1009-1014, https://doi.org/10.1126/science.1090165.
- Malone, L. A., Qian, P., Mayneord, G. E., Hitchcock, A., Farmer, D. A., Thompson, R. F., Swainsbury, D. J. K., Ranson, N. A., Hunter, C. N., and Johnson, M. P. (2019) Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6 Å resolution, Nature, 575, 535-539, https://doi.org/10.1038/s41586-019-1746-6.
- Pintscher, S., Pietras, R., Mielecki, B., Szwalec, M., Wójcik-Augustyn, A., Indyka, P., Rawski, M., Koziej, L., Jaciuk, M., Ważny, G., Glatt, S., and Osyczka, A. (2024) Molecular basis of plastoquinone reduction in plant cytochrome b6f, Nat. Plants, 10, 1814-1825, https://doi.org/10.1038/s41477-024-01804-x.
- Martinez, S. E., Huang, D., Ponomarev, M., Cramer, W. A., and Smith, J. L. (1996) The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain, Protein Sci., 5, 1081-1092, https://doi.org/10.1002/pro.5560050610.
- Ponamarev, M. V., and Cramer, W. A. (1998) Perturbation of the internal water chain in cytochrome f of oxygenic photosynthesis: loss of the concerted reduction of cytochromes f and b6, Biochemistry, 37, 17199-17208, https://doi.org/10.1021/bi981814j.
- Sainz, G., Carrell, C. J., Ponamarev, M. V., Soriano, G. M., Cramer, W. A., and Smith, J. L. (2000) Interruption of the internal water chain of cytochrome f impairs photosynthetic function, Biochemistry, 39, 9164-9173, https://doi.org/10.1021/bi0004596.
- Hasan, S. S., Yamashita, E., Baniulis, D., and Cramer, W. A. (2013) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex, Proc. Natl. Acad. Sci. USA, 110, 4297-4302, https://doi.org/10.1073/pnas.1222248110.
- Crofts, A. R., Hong, S., Wilson, C., Burton, R., Victoria, D., Harrison, C., and Schulten, K. (2013) The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex, Biochim. Biophys. Acta Bioenerg., 1827, 1362-1377, https://doi.org/10.1016/j.bbabio.2013.01.009.
- Tikhonov, A. N. (2014) The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways, Plant Physiol. Biochem., 81, 163-183, https://doi.org/10.1016/j.plaphy.2013.12.011.
- Zito, F., Finazzi, G., Joliot, P., and Wollman, F. A. (1998) Glu78, from the conserved PEWY sequence of subunit IV, has a key function in cytochrome b6f turnover, Biochemistry, 37, 10395-10403, https://doi.org/10.1021/bi980238o.
- Szwalec, M., Bujnowicz, Ł., Sarewicz, M., and Osyczka, A. (2022) Unexpected heme redox potential values implicate an uphill step in cytochrome b6f, J. Phys. Chem. B, 126, 9771-9780, https://doi.org/10.1021/acs.jpcb.2c05729.
- Hope, A. B. (1993) The chloroplast cytochrome bf complex A critical focus on function, Biochim. Biophys. Acta Bioenerg., 1143, 1-22, https://doi.org/10.1016/0005-2728(93)90210-7.
- Ustynyuk, L. Y., and Tikhonov, A. N. (2022) Plastoquinol oxidation: rate-limiting stage in the electron transport chain of chloroplasts, Biochemistry (Moscow), 87, 1084-1097, https://doi.org/10.1134/S0006297922100029.
- Sarewicz, M., Szwalec, M., Pintscher, S., Indyka, P., Rawski, M., Pietras, R., Mielecki, B., Koziej, Ł., Jaciuk, M., Glatt, S., and Osyczka, A. (2023) High-resolution cryo-EM structures of plant cytochrome b6f at work, Sci. Adv., 9, eadd9688, https://doi.org/10.1126/sciadv.add9688.
- Finazzi, G. (2002) Redox-coupled proton pumping activity in cytochrome b6f, as evidenced by the pH dependence of electron transfer in whole cells of Chlamydomonas reinhardtii, Biochemistry, 41, 7475-7482, https://doi.org/10.1021/bi025714w.
- Soriano, G. M., Guo, L.-W., de Vitry, C., Kallas, T., and Cramer, W. A. (2002) Electron transfer from the Rieske iron-sulfur Protein (ISP) to cytochrome f in vitro, J. Biol. Chem., 277, 41865-41871, https://doi.org/10.1074/jbc.M205772200.
- Arantes, G. M. (2025) Redox-activated proton transfer through a redundant network in the Qo site of cytochrome bc1, J. Chem. Inf. Model, 65, 2660-2669, https://doi.org/10.1021/acs.jcim.4c02361.
- Soriano, G. M., Ponamarev, M. V., Carrell, C. J., Xia, D., Smith, J. L., and Cramer, W. A. (1999) Comparison of the cytochrome bc1 complex with the anticipated structure of the cytochrome b6f complex: De Plus Ça Change de Plus C’est la Même Chose, J. Bioenerg. Biomembr., 31, 201-214, https://doi.org/10.1023/A:1005463527752.
- Rumberg, B., and Siggel, U. (1969) pH changes in the inner phase of the thylakoids during photosynthesis, Naturwissenschaften, 56, 130-132, https://doi.org/10.1007/BF00601025.
- Tikhonov, A. N., Khomutov, G. B., Ruuge, E. K., and Blumenfeld, L. A. (1981) Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH, Biochim. Biophys. Acta Bioenerg., 637, 321-333, https://doi.org/10.1016/0005-2728(81)90171-7.
- Hope, A. B., Valente, P., and Matthews, D. B. (1994) Effects of pH on the kinetics of redox reactions in and around the cytochrome bf complex in an isolated system, Photosynth. Res., 42, 111-120, https://doi.org/10.1007/BF02187122.
- Finazzi, G., and Rappaport, F. (1998) In vivo characterization of the electrochemical proton gradient generated in darkness in green algae and its kinetic effects on cytochrome b6f turnover, Biochemistry, 37, 9999-10005, https://doi.org/10.1021/bi980320j.
- Tikhonov, A. N. (2015) Induction events and short-term regulation of electron transport in chloroplasts: an overview, Photosynth. Res., 125, 65-94, https://doi.org/10.1007/s11120-015-0094-0.
- Finazzi, G., Minagawa, J., and Johnson, G. N. (2016) The cytochrome b6f complex: a regulatory hub controlling electron flow and the dynamics of photosynthesis? in Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling (Cramer, W. A., and Kallas, T., eds), Springer Netherlands, pp. 437-452, https://doi.org/10.1007/978-94-017-7481-9_22.
- Genty, B., and Harbinson, J. (1996) Regulation of light utilization for photosynthetic electron transport, in Photosynthesis and the Environment (Baker, N. R., eds), Springer Netherlands, pp. 67-99, https://doi.org/10.1007/0-306-48135-9_3.
- Kramer, D. M., Sacksteder, C. A., and Cruz, J. A. (1999) How acidic is the lumen? Photosynth. Res., 60, 151-163, https://doi.org/10.1023/A:1006212014787.
- Cooley, J. W. (2013) Protein conformational changes involved in the cytochrome bc1 complex catalytic cycle, Biochim. Biophys. Acta Bioenerg., 1827, 1340-1345, https://doi.org/10.1016/j.bbabio.2013.07.007.
- Schoepp, B., Brugna, M., Riedel, A., Nitschke, W., and Kramer, D. M. (1999) The Qo-site inhibitor DBMIB favours the proximal position of the chloroplast Rieske protein and induces a pK-shift of the redox-linked proton, FEBS Lett., 450, 245-250, https://doi.org/10.1016/s0014-5793(99)00511-6.
- Roberts, A. G., Bowman, M. K., and Kramer, D. M. (2004) The inhibitor DBMIB provides insight into the functional architecture of the Qo site in the cytochrome b6f complex, Biochemistry., 43, 7707-7716, https://doi.org/10.1021/bi049521f.
- Vilyanen, D., Pavlov, I., Naydov, I., Ivanov, B., and Kozuleva, M. (2024) Peculiarities of DNP-INT and DBMIB as inhibitors of the photosynthetic electron transport, Photosynth. Res., 161, 79-92, https://doi.org/10.1007/s11120-023-01063-5.
- Jahns, P., Graf, M., Munekage, Y., and Shikanai, T. (2002) Single point mutation in the Rieske iron-sulfur subunit of cytochrome b6/f leads to an altered pH dependence of plastoquinol oxidation in Arabidopsis, FEBS Lett., 519, 99-102, https://doi.org/10.1016/s0014-5793(02)02719-9.
- Vilyanen, D., Naydov, I., Ivanov, B., Borisova-Mubarakshina, M., and Kozuleva, M. (2022) Inhibition of plastoquinol oxidation at the cytochrome b6f complex by dinitrophenyl ether of iodonitrothymol (DNP-INT) depends on irradiance and H+ uptake by thylakoid membranes, Biochim. Biophys. Acta Bioenerg., 1863, 148506, https://doi.org/10.1016/j.bbabio.2021.148506.
- Ivanov, B. N. (1993) Stoichiometry of proton uptake by thylakoids during electron transport in chloroplasts, in Photosynthesis: Photoreactions to Plant Productivity (Abrol, Y. P., Mohanty, P., and Govindjee, eds), Springer Netherlands, pp. 109-128, https://doi.org/10.1007/978-94-011-2708-0_4.
- Schansker, G. (2022) Determining photosynthetic control, a probe for the balance between electron transport and Calvin-Benson cycle activity, with the DUAL-KLAS-NIR, Photosynth. Res., 153, 191-204, https://doi.org/10.1007/s11120-022-00934-7.
- Joliot, P., and Johnson, G. N. (2011) Regulation of cyclic and linear electron flow in higher plants, Proc. Natl. Acad. Sci. USA, 108, 13317-13322, https://doi.org/10.1073/pnas.1110189108.
- Ott, T., Clarke, J., Birks, K., and Johnson, G. (1999) Regulation of the photosynthetic electron transport chain, Planta, 209, 250-258, https://doi.org/10.1007/s004250050629.
- Harbinson, J., and Hedley, C. L. (1989) The kinetics of P-700+ reduction in leaves: a novel in situ probe of thylakoid functioning, Plant Cell Environ., 12, 357-369, https://doi.org/10.1111/j.1365-3040.1989.tb01952.x.
- Laisk, A., and Oja, V. (1994) Range of photosynthetic control of postillumination P700+ reduction rate in sunflower leaves, Photosynth. Res., 39, 39-50, https://doi.org/10.1007/BF00027141.
- Kanazawa, A., Ostendorf, E., Kohzuma, K., Hoh, D., Strand, D. D., Sato-Cruz, M., Savage, L., Cruz, J. A., Fisher, N., Froehlich, J. E., and Kramer, D. M. (2017) Chloroplast ATP synthase modulation of the thylakoid proton motive force: implications for photosystem I and photosystem II photoprotection, Front. Plant Sci., 8, 719, https://doi.org/10.3389/fpls.2017.00719.
- Takagi, D., Amako, K., Hashiguchi, M., Fukaki, H., Ishizaki, K., Goh, T., Fukao, Y., Sano, R., Kurata, T., Demura, T., Sawa, S., and Miyake, C. (2017) Chloroplastic ATP synthase builds up a proton motive force preventing production of reactive oxygen species in photosystem I, Plant J., 91, 306-324, https://doi.org/10.1111/tpj.13566.
- Wang, C., and Shikanai, T. (2019) Modification of activity of the thylakoid H+/K+ antiporter KEA3 disturbs ∆pH-dependent regulation of photosynthesis, Plant Physiol., 181, 762-773, https://doi.org/10.1104/pp.19.00766.
- Wu, G., Ortiz-Flores, G., Ortiz-Lopez, A., and Ort, D. R. (2007) A point mutation in atpC1 raises the redox potential of the Arabidopsis chloroplast ATP synthase γ-subunit regulatory disulfide above the range of thioredoxin modulation, JBC, 282, 36782-36789, https://doi.org/10.1074/jbc.M707007200.
- Degen, G. E., Jackson, P. J., Proctor, M. S., Zoulias, N., Casson, S. A., and Johnson, M. P. (2023) High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control, Plant Physiol., 192, 370-386, https://doi.org/10.1093/plphys/kiad084.
- Nandha, B., Finazzi, G., Joliot, P., Hald, S., and Johnson, G. N. (2007) The role of PGR5 in the redox poising of photosynthetic electron transport, Biochim. Biophys. Acta Bioenerg., 1767, 1252-1259, https://doi.org/10.1016/j.bbabio.2007.07.007.
- Penzler, J.-F., Naranjo, B., Walz, S., Marino, G., Kleine, T., and Leister, D. (2024) A pgr5 suppressor screen uncovers two distinct suppression mechanisms and links cytochrome b6f complex stability to PGR5, Plant Cell, 36, 4245-4266, https://doi.org/10.1093/plcell/koae098.
- Degen, G. E., Pastorelli, F., and Johnson, M. P. (2024) Proton Gradient Regulation 5 is required to avoid photosynthetic oscillations during light transitions, J. Exp. Bot., 75, 947-961, https://doi.org/10.1093/jxb/erad428.
- Avenson, T. J., Cruz, J. A., Kanazawa, A., and Kramer, D. M. (2005) Regulating the proton budget of higher plant photosynthesis, Proc. Natl. Acad. Sci. USA, 102, 9709-9713, https://doi.org/10.1073/pnas.0503952102.
- Kozuleva, M. A., Petrova, A. A., Mamedov, M. D., Semenov, A. Yu., and Ivanov, B. N. (2014) O2 reduction by photosystem I involves phylloquinone under steady-state illumination, FEBS Lett., 588, 4364-4368, https://doi.org/10.1016/j.febslet.2014.10.003.
- Kozuleva, M., Goss, T., Twachtmann, M., Rudi, K., Trapka, J., Selinski, J., Ivanov, B., Garapati, P., Steinhoff, H., Hase, T., Scheibe, R., Klare, J. P., and Hanke, G. T. (2016) Ferredoxin:NADP(H) oxidoreductase abundance and location influences redox poise and stress tolerance, Plant Physiol., 172, 1480-1493, https://doi.org/10.1104/pp.16.01084.
- Taylor, R. M., Sallans, L., Frankel, L. K., and Bricker, T. M. (2018) Natively oxidized amino acid residues in the spinach cytochrome b6f complex, Photosynth. Res., 137, 141-151, https://doi.org/10.1007/s11120-018-0485-0.
- Sang, M., Ma, F., Xie, J., Chen, X.-B., Wang, K.-B., Qin, X.-C., Wang, W.-D., Zhao, J.-Q., Li, L.-B., Zhang, J.-P., and Kuang, T.-Y. (2010) High-light induced singlet oxygen formation in cytochrome b6f complex from Bryopsis corticulans as detected by EPR spectroscopy, Biophys. Chem., 146, 7-12, https://doi.org/10.1016/j.bpc.2009.09.012.
- Baniulis, D., Hasan, S. S., Stofleth, J. T., and Cramer, W. A. (2013) Mechanism of enhanced superoxide production in the cytochrome b6f complex of oxygenic photosynthesis, Biochem., 52, 8975-8983, https://doi.org/10.1021/bi4013534.
- Sarewicz, M., Bujnowicz, Ł., Bhaduri, S., Singh, S. K., Cramer, W. A., and Osyczka, A. (2017) Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f, Proc. Natl. Acad. Sci. USA, 114, 1323-1328, https://doi.org/10.1073/pnas.1618840114.
- Borisova-Mubarakshina, M. M., Naydov, I. A., and Ivanov, B. N. (2018) Oxidation of the plastoquinone pool in chloroplast thylakoid membranes by superoxide anion radicals, FEBS Lett., 592, 3221-3228, https://doi.org/10.1002/1873-3468.13237.
- Kozuleva, M. (2022) Recent advances in the understanding of superoxide anion radical formation in the photosynthetic electron transport chain, Acta Physiol. Plant., 44, 92, https://doi.org/10.1007/s11738-022-03428-0.
- Pesaresi, P., Pribil, M., Wunder, T., and Leister, D. (2011) Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38, Biochim. Biophys. Acta Bioenerg., 1807, 887-896, https://doi.org/10.1016/j.bbabio.2010.08.002.
- Schönberg, A., Rödiger, A., Mehwald, W., Galonska, J., Christ, G., Helm, S., Thieme, D., Majovsky, P., Hoehenwarter, W., and Baginsky, S. (2017) Identification of STN7/STN8 kinase targets reveals connections between electron transport, metabolism and gene expression, Plant J., 90, 1176-1186, https://doi.org/10.1111/tpj.13536.
- Grieco, M., Tikkanen, M., Paakkarinen, V., Kangasjärvi, S., and Aro, E.-M. (2012) Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light, Plant Physiol., 160, 1896-1910, https://doi.org/10.1104/pp.112.206466.
- Shapiguzov, A., Chai, X., Fucile, G., Longoni, P., Zhang, L., and Rochaix, J.-D. (2016) Activation of the Stt7/STN7 kinase through dynamic interactions with the cytochrome b6f complex, Plant Physiol., 171, 82-92, https://doi.org/10.1104/pp.15.01893.
- Hoh, D., Froehlich, J. E., and Kramer, D. M. (2024) Redox regulation in chloroplast thylakoid lumen: the pmf changes everything, again, Plant Cell Environ., 47, 2749-2765, https://doi.org/10.1111/pce.14789.
- Балашов Н.В., Борисова-Мубаракшина М.М., Ветошкина Д.В. (2025) Влияние пероксида водорода на перераспределение антенных комплексов между фотосистемами у высших растений, Биохимия, 90, 1028-1042, https://doi.org/10.31857/S0320972525070112.
- Fernyhough, P., Horton, P., and Foyer, C. (1984) Regulation of light harvesting chlorophyll a/b binding protein (LHCP) phosphorylation in intact maize mesophyll chloroplasts, in Advances in Photosynthesis Research, Springer, Dordrecht, pp. 299-302, https://doi.org/10.1007/978-94-017-4973-2_68.
- Vershubskii, A. V., Trubitsin, B. V., Priklonskii, V. I., and Tikhonov, A. N. (2017) Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts, Biochim. Biophys. Acta Bioenerg., 1859, 388-401, https://doi.org/10.1016/j.bbamem.2016.11.016.
Дополнительные файлы


