МЕХАНИЗМЫ ФЕРРОПТОЗА И НЕКОДИРУЮЩИЕ РНК ПРИ НЕМЕЛКОКЛЕТОЧНОМ РАКЕ ЛЁГКОГО
- Авторы: Селезнёва А.Д1, Бурдённый А.М1,2, Селезнёва А.Д1, Филиппова Е.А1, Лукина С.С1, Брага Э.А1, Логинов В.И1
-
Учреждения:
- Научно-исследовательский институт общей патологии и патофизиологии
- Институт биохимической физики имени Н.М. Эмануэля РАН
- Выпуск: Том 90, № 10 (2025)
- Страницы: 1439-1462
- Раздел: Статьи
- URL: https://journals.rcsi.science/0320-9725/article/view/355111
- DOI: https://doi.org/10.31857/S0320972525100038
- ID: 355111
Цитировать
Аннотация
Об авторах
Ал. Д Селезнёва
Научно-исследовательский институт общей патологии и патофизиологииМосква, Россия
А. М Бурдённый
Научно-исследовательский институт общей патологии и патофизиологии; Институт биохимической физики имени Н.М. Эмануэля РАН
Email: burdennyy@gmail.com
Москва, Россия; Москва, Россия
Ан. Д Селезнёва
Научно-исследовательский институт общей патологии и патофизиологииМосква, Россия
Е. А Филиппова
Научно-исследовательский институт общей патологии и патофизиологииМосква, Россия
С. С Лукина
Научно-исследовательский институт общей патологии и патофизиологииМосква, Россия
Э. А Брага
Научно-исследовательский институт общей патологии и патофизиологииМосква, Россия
В. И Логинов
Научно-исследовательский институт общей патологии и патофизиологииМосква, Россия
Список литературы
- Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico-Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., et al. (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ., 25, 486-541, https://doi.org/10.1038/s41418-017-0012-4.
- Zhang, Q., Fan, X., Zhang, X., and Ju, S. (2023) Ferroptosis in tumors and its relationship to other programmed cell death: role of non-coding RNAs, J. Translat. Med., 21, 514, https://doi.org/10.1186/s12967-023-04370-6.
- Xiang, S., Yan, W., Ren, X., Feng, J., and Zu, X. (2024) Role of ferroptosis and ferroptosis-related long non-coding RNA in breast cancer, Cell. Mol. Biol. Lett., 29, 40, https://doi.org/10.1186/s11658-024-00560-2.
- Yu, Y., Yan, Y., Niu, F., Wang, Y., Chen, X., Su, G., Liu, Y., Zhao, X., Qian, L., Liu, P., and Xiong, Y. (2021) Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases, Cell Death Discov., 7, 193, https://doi.org/10.1038/s41420-021-00579-w.
- Zhou, Q., Meng, Y., Li, D., Yao, L., Le, J., Liu, Y., Sun, Y., Zeng, F., Chen, X., and Deng, G. (2024) Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies, Signal Transduct. Targeted Ther., 9, 55, https://doi.org/10.1038/s41392-024-01769-5.
- Jiang, X., Stockwell, B. R., and Conrad, M. (2021) Ferroptosis: mechanisms, biology and role in disease, Nat. Rev. Mol. Cell Biol., 22, 266-282, https://doi.org/10.1038/s41580-020-00324-8.
- Chen, Y., Li, X., Wang, S., Miao, R., and Zhong, J. (2023) Targeting iron metabolism and ferroptosis as novel therapeutic approaches in cardiovascular diseases, Nutrients, 15, 591, https://doi.org/10.3390/nu15030591.
- Xiang, Y., Song, X., and Long, D. (2024) Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases, Arch. Toxicol., 98, 579-615, https://doi.org/10.1007/s00204-023-03660-8.
- Lai, B., Wu, C. H., Wu, C. Y., Luo, S. F., and Lai, J. H. (2022) Ferroptosis and autoimmune diseases, Frontiers in immunology, 13, 916664, https://doi.org/10.3389/fimmu.2022.916664.
- Zou, J., Wang, L., Tang, H., Liu, X., Peng, F., and Peng, C. (2021) Ferroptosis in non-small cell lung cancer: progression and therapeutic potential on it, Int. J. Mol. Sci., 22, 13335, https://doi.org/10.3390/ijms222413335.
- Zhang, X., Li, X., Xia, R., and Zhang, H. S. (2024) Ferroptosis resistance in cancer: recent advances and future perspectives, Biochem. Pharmacol., 219, 115933, https://doi.org/10.1016/j.bcp.2023.115933.
- Wang, Y., Zheng, L., Shang, W., Yang, Z., Li, T., Liu, F., Shao, W., Lv, L., Chai, L., Qu, L., Xu, Q., Du, J., Liang, X., Zeng, J., and Jia, J. (2022) Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer, Cell Death Differ., 29, 2190-2202, https://doi.org/10.1038/s41418-022-01008-w.
- Zhang, H., Chen, N., Ding, C., Zhang, H., Liu, D., and Liu, S. (2024) Ferroptosis and EMT resistance in cancer: a comprehensive review of the interplay, Front. Oncol., 14, 1344290, https://doi.org/10.3389/fonc.2024.1344290.
- Farooqi, A. A., Kapanova, G., Kalmakhanov, S., Kussainov, A. Z., and Datkhayeva, Z. (2023) Regulation of ferroptosis by non-coding RNAs: mechanistic insights, J. Pharmacol. Exp. Ther., 384, 20-27, https://doi.org/10.1124/jpet.121.001225.
- Liu, X., Olszewski, K., Zhang, Y., Lim, E. W., Shi, J., Zhang, X., Zhang, J., Lee, H., Koppula, P., Lei, G., Zhuang, L., You, M. J., Fang, B., Li, W., Metallo, C. M., Poyurovsky, M. V., and Gan, B. (2020) Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer, Nat. Cell Biol., 22, 476-486, https://doi.org/10.1038/s41556-020-0496-x.
- Калинина, Е. В., Гаврилюк, Л. А. (2020) Синтез глутатиона в опухолевых клетках, Биохимия, 85, 1051-1065, https://doi.org/10.31857/S0320972520080059.
- Seibt, T. M., Proneth, B., and Conrad, M. (2019) Role of GPX4 in ferroptosis and its pharmacological implication, Free Radic. Biol. Med., 133, 144-152, https://doi.org/10.1016/j.freeradbiomed.2018.09.014.
- Dixon, S. J., Patel, D. N., Welsch, M., Skouta, R., Lee, E. D., Hayano, M., Thomas, A. G., Gleason, C. E., Tatonetti, N. P., Slusher, B. S., and Stockwell, B. R. (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis, eLife, 3, e02523, https://doi.org/10.7554/eLife.02523.
- Giustizieri, M., Petrillo, S., D'Amico, J., Torda, C., Quatrana, A., Vigevano, F., Specchio, N., Piemonte, F., and Cherubini, E. (2023) The ferroptosis inducer RSL3 triggers interictal epileptiform activity in mice cortical neurons, Front. Cell. Neurosci., 17, 1213732, https://doi.org/10.3389/fncel.2023.1213732.
- Zhang, X., Zheng, X., Ying, X., Xie, W., Yin, Y., and Wang, X. (2023) CEBPG suppresses ferroptosis through transcriptional control of SLC7A11 in ovarian cancer, J. Translat. Med., 21, 334, https://doi.org/10.1186/s12967-023-04136-0.
- Wu, F., Xiong, G., Chen, Z., Lei, C., Liu, Q., and Bai, Y. (2022) SLC3A2 inhibits ferroptosis in laryngeal carcinoma via mTOR pathway, Hereditas, 159, 6, https://doi.org/10.1186/s41065-022-00225-0.
- Yang, Y., Lin, J., Guo, S., Xue, X., Wang, Y., Qiu, S., Cui, J., Ma, L., Zhang, X., and Wang, J. (2020) RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer, Cancer Cell Int., 20, 587, https://doi.org/10.1186/s12935-020-01689-8.
- Xu, Z., Wang, X., Sun, W., Xu, F., Kou, H., Hu, W., Zhang, Y., Jiang, Q., Tang, J., and Xu, Y. (2023) RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer, Redox Biol., 68, 102952, https://doi.org/10.1016/j.redox.2023.102952.
- Свищева П. О., Каниболоцкий А. А., Яремин Б. И., Аносова Е. Ю., Карина Я. С., Казиахмедова З. Г., Новрузбеков М. С. (2024) Малоизученные мишени патогенеза ишемически-реперфузионного повреждения при трансплантации печени, Трансплантология, 16, 244-259, https://doi.org/10.23873/2074-0506-2024-16-2-244-259.
- Doll, S., Proneth, B., Tyurina, Y. Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., Prokisch, H., Trümbach, D., Mao, G., Qu, F., Bayir, H., Füllekrug, J., Scheel, C. H., Wurst, W., Schick, J. A., Kagan, V. E., Friedmann Angeli, J. P., and Conrad, M. (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat. Chem. Biol., 13, 91-98, https://doi.org/10.1038/nchembio.2239.
- Magtanong, L., Ko, P. J., To, M., Cao, J. Y., Forcina, G. C., Tarangelo, A., Ward, C. C., Cho, K., Patti, G. J., Nomura, D. K., Olzmann, J. A., and Dixon, S. J. (2019) Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state, Cell Chem. Biol., 26, 420-432.e9, https://doi.org/10.1016/j.chembiol.2018.11.016.
- Feng, S., Rao, Z., Zhang, J., She, X., Chen, Y., Wan, K., Li, H., Zhao, C., Feng, Y., Wang, G., Hu, J., and Luo, X. (2023) Inhibition of CARM1-mediated methylation of ACSL4 promotes ferroptosis in colorectal cancer, Adv. Sci., 10, e2303484, https://doi.org/10.1002/advs.202303484.
- Wen, F., Ling, H., Ran, R., Li, X., Wang, H., Liu, Q., Li, M., and Yu, T. (2025) LPCAT3 regulates the proliferation and metastasis of serous ovarian cancer by modulating arachidonic acid, Translat. Oncol., 52, 102256, https://doi.org/10.1016/j.tranon.2024.102256.
- Liu, T., Xu, X., Li, J., Bai, M., Zhu, W., Liu, Y., Liu, S., Zhao, Z., Li, T., Jiang, N., Bai, Y., Jin, Q., Zhang, Y., Zheng, Y., Zhou, S., Shan, S., Sun, Y., Liang, G., Luo, Y., Chen, X., Guo, H., and Yang, R. (2023) ALOX5 deficiency contributes to bladder cancer progression by mediating ferroptosis escape, Cell Death Dis., 14, 800, https://doi.org/10.1038/s41419-023-06333-7.
- Fu, C., Cao, N., Zeng, S., Zhu, W., Fu, X., Liu, W., and Fan, S. (2023) Role of mitochondria in the regulation of ferroptosis and disease, Front. Med., 10, 1301822, https://doi.org/10.3389/fmed.2023.1301822.
- Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., Koppula, P., Wu, S., Zhuang, L., Fang, B., Poyurovsky, M. V., Olszewski, K., and Gan, B. (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer, Nature, 593, 586-590, https://doi.org/10.1038/s41586-021-03539-7.
- Kraft, V. A. N., Bezjian, C. T., Pfeiffer, S., Ringelstetter, L., Müller, C., Zandkarimi, F., Merl-Pham, J., Bao, X., Anastasov, N., Kössl, J., Brandner, S., Daniels, J. D., Schmitt-Kopplin, P., Hauck, S. M., Stockwell, B. R., Hadian, K., and Schick, J. A. (2020) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling, ACS Central Sci., 6, 41-53, https://doi.org/10.1021/acscentsci.9b01063.
- Feng, B., Su, W., Guo, X., Ding, T., Duan, Y., Hu, L., and Yu, M. (2024) MDH2 regulates the sensitivity of clear cell renal cell carcinoma to ferroptosis through its interaction with FSP1, Cell Death Discov., 10, 363, https://doi.org/10.1038/s41420-024-02137-6.
- Peng, Y., Zheng, W., Chen, Y., Lei, X., Yang, Z., Yang, Y., Liang, W., Sun, K., Li, G., and Yu, J. (2024) POLQ inhibition attenuates the stemness and ferroptosis resistance in gastric cancer cells via downregulation of dihydroorotate dehydrogenase, Cell Death Dis., 15, 248, https://doi.org/10.1038/s41419-024-06618-5.
- Hu, Q., Wei, W., Wu, D., Huang, F., Li, M., Li, W., Yin, J., Peng, Y., Lu, Y., Zhao, Q., and Liu, L. (2022) Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis, Front. Cell Dev. Biol., 10, 810327, https://doi.org/10.3389/fcell.2022.810327.
- Yu, X., Cheng, L., Liu, S., Wang, M., Zhang, H., Wang, X., Zhang, H., Yang, Z., and Wu, S. (2024) Correlation between ferroptosis and adriamycin resistance in breast cancer regulated by transferrin receptor and its molecular mechanism, FASEB J., 38, e23550, https://doi.org/10.1096/fj.202302597R.
- Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J., and Jiang, X. (2016) Ferroptosis is an autophagic cell death process, Cell Res., 26, 1021-1032, https://doi.org/10.1038/cr.2016.95.
- Gao, G., Li, J., Zhang, Y., and Chang, Y. Z. (2019) Cellular iron metabolism and regulation, Adv. Exp. Med. Biol., 1173, 21-32, https://doi.org/10.1007/978-981-13-9589-5_2.
- Vogt, A. S., Arsiwala, T., Mohsen, M., Vogel, M., Manolova, V., and Bachmann, M. F. (2021) On iron metabolism and its regulation, Int. J. Mol. Sci., 22, 4591, https://doi.org/10.3390/ijms22094591.
- Wolff, N. A., Garrick, M. D., Zhao, L., Garrick, L. M., Ghio, A. J., and Thévenod, F. (2018) A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese, Sci. Rep., 8, 211, https://doi.org/10.1038/s41598-017-18584-4.
- Lipper, C. H., Stofleth, J. T., Bai, F., Sohn, Y. S., Roy, S., Mittler, R., Nechush tai, R., Onuchic, J. N., and Jennings, P. A. (2019) Redox-dependent gating of VDAC by mitoNEET, Proc. Natl. Acad. Sci. USA, 116, 19924-19929, https://doi.org/10.1073/pnas.1908271116.
- Li, P., Hendricks, A. L., Wang, Y., Villones, R. L. E., Lindkvist-Petersson, K., Meloni, G., Cowan, J. A., Wang, K., and Gourdon, P. (2022) Structures of Atm1 provide insight into [2Fe-2S] cluster export from mitochondria, Nat. Commun., 13, 4339, https://doi.org/10.1038/s41467-022-32006-8.
- Chang, H. C., Shapiro, J. S., Jiang, X., Senyei, G., Sato, T., Geier, J., Sawicki, K. T., and Ardehali, H. (2021) Augmenter of liver regeneration regulates cellular iron homeostasis by modulating mitochondrial transport of ATP-binding cassette B8, eLife, 10, e65158, https://doi.org/10.7554/eLife.65158.
- Wang, X., Ma, H., Sun, J., Zheng, T., Zhao, P., Li, H., and Yang, M. (2022) Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis, Biol. Trace Elem. Res., 200, 298-307, https://doi.org/10.1007/s12011-021-02627-z.
- Ren, G., Zhou, J., Su, Y., Yang, Q., and Li, J. (2025) TFRC promotes the proliferation, migration, and invasion of osteosarcoma cells by increasing the intracellular iron content and RRM2 expression, Front. Oncol., 15, 1567216, https://doi.org/10.3389/fonc.2025.1567216.
- Hu, W., Zhou, C., Jing, Q., Li, Y., Yang, J., Yang, C., Wang, L., Hu, J., Li, H., Wang, H., Yuan, C., Zhou, Y., Ren, X., Tong, X., Du, J., and Wang, Y. (2021) FTH promotes the proliferation and renders the HCC cells specifically resist to ferroptosis by maintaining iron homeostasis, Cancer Cell Int., 21, 709, https://doi.org/10.1186/s12935-021-02152-0.
- Jiang, H., Zeng, Y., Jiang, X., Xu, X., Zhao, L., Yuan, X., Xu, J., Zhao, M., Wu, F., and Li, G. (2024) Ketogenesis attenuated KLF5 disrupts iron homeostasis via LIF to confer oxaliplatin vulnerability in colorectal cancer, Biochim. Biophys. Acta, 1870, 167210, https://doi.org/10.1016/j.bbadis.2024.167210.
- Тороповский А. Н., Павлова О. Н., Викторов Д. А., Никитин А. Г. (2021) Молекулярно-генетические механизмы сигнального каскада RAS-RAF-MEK-ERK, связанные с развитием опухолевого процесса и назначением таргетных препаратов при колоректальном раке, Вестник медицинского института «РЕАВИЗ». Реабилитация, Врач и Здоровье, 4, 25-35, https://doi.org/10.20340/vmi-rvz.2021.4.MORPH.3.
- Poursaitidis, I., Wang, X., Crighton, T., Labuschagne, C., Mason, D., Cramer, S. L., Triplett, K., Roy, R., Pardo, O. E., Seckl, M. J., Rowlinson, S. W., Stone, E., and Lamb, R. F. (2017) Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine, Cell Rep., 18, 2547-2556, https://doi.org/10.1016/j.celrep.2017.02.054.
- Hu, K., Li, K., Lv, J., Feng, J., Chen, J., Wu, H., Cheng, F., Jiang, W., Wang, J., Pei, H., Chiao, P. J., Cai, Z., Chen, Y., Liu, M., and Pang, X. (2020) Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma, J. Clin. Invest., 130, 1752-1766, https://doi.org/10.1172/JCI124049.
- Müller, F., Lim, J. K. M., Bebber, C. M., Seidel, E., Tishina, S., Dahlhaus, A., Stroh, J., Beck, J., Yapici, F. I., Nakayama, K., Torres Fernández, L., Brägelmann, J., Leprivier, G., and von Karstedt, S. (2023) Elevated FSP1 protects KRAS-mutated cells from ferroptosis during tumor initiation, Cell Death Differ., 30, 442-456, https://doi.org/10.1038/s41418-022-01096-8.
- Михаленко Е. П., Щаюк А. Н., Кильчевский А. В. (2019) Сигнальные пути: механизм регуляции пролиферации и выживаемости опухолевых клеток, Мол. Прикл. Генет., 26, 145-157, https://doi.org/10.24411/1682-9931-2019-10015.
- Zhang, Y., Swanda, R. V., Nie, L., Liu, X., Wang, C., Lee, H., Lei, G., Mao, C., Koppula, P., Cheng, W., Zhang, J., Xiao, Z., Zhuang, L., Fang, B., Chen, J., Qian, S. B., and Gan, B. (2021) mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation, Nat. Commun., 12, 1589, https://doi.org/10.1038/s41467-021-21841-w.
- Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., and Sabatini, D. M. (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids, Cell, 141, 290-303, https://doi.org/10.1016/j.cell.2010.02.024.
- Yi, J., Zhu, J., Wu, J., Thompson, C. B., and Jiang, X. (2020) Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis, Proc. Natl. Acad. Sci. USA, 117, 31189-31197, https://doi.org/10.1073/pnas.2017152117.
- Jiang, L., Kon, N., Li, T., Wang, S. J., Su, T., Hibshoosh, H., Baer, R., and Gu, W. (2015) Ferroptosis as a p53-mediated activity during tumour suppression, Nature, 520, 57-62, https://doi.org/10.1038/nature14344.
- Xie, Y., Zhu, S., Song, X., Sun, X., Fan, Y., Liu, J., Zhong, M., Yuan, H., Zhang, L., Billiar, T. R., Lotze, M. T., Zeh, H. J., 3rd, Kang, R., Kroemer, G., and Tang, D. (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity, Cell Rep., 20, 1692-1704, https://doi.org/10.1016/j.celrep.2017.07.055.
- Hassin, O., and Oren, M. (2023) Drugging p53 in cancer: one protein, many targets, Nat. Rev. Drug Discov., 22, 127-144, https://doi.org/10.1038/s41573-022-00571-8.
- Wang, C. K., Chen, T. J., Tan, G. Y. T., Chang, F. P., Sridharan, S., Yu, C. A., Chang, Y. H., Chen, Y. J., Cheng, L. T., and Hwang-Verslues, W. W. (2023) MEX3A mediates p53 degradation to suppress ferroptosis and facilitate ovarian cancer tumorigenesis, Cancer Res., 83, 251-263, https://doi.org/10.1158/0008-5472.CAN-22-1159.
- Zhang, X., Zheng, Q., Yue, X., Yuan, Z., Ling, J., Yuan, Y., Liang, Y., Sun, A., Liu, Y., Li, H., Xu, K., He, F., Wang, J., Wu, J., Zhao, C., and Tian, C. (2022) ZNF498 promotes hepatocellular carcinogenesis by suppressing p53-mediated apoptosis and ferroptosis via the attenuation of p53 Ser46 phosphorylation, J. Exp. Clin. Cancer Res., 41, 79, https://doi.org/10.1186/s13046-022-02288-3.
- Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., and Jemal, A. (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 74, 229-263, https://doi.org/10.3322/caac.21834.
- Planchard, D., Popat, S., Kerr, K., Novello, S., Smit, E. F., Faivre-Finn, C., Mok, T. S., Reck, M., Van Schil, P. E., Hellmann, M. D., Peters, S., and ESMO Guidelines Committee (2018) Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol., 29, iv192-iv237, https://doi.org/10.1093/annonc/mdy275.
- Сибилева О. Ю., Ромашкина Н. В. (2023) Эпидемиология рака легкого и роль молекулярно-генетического исследования в тераностике заболевания (краткий обзор литературы), Вестник Новых Мед. Технол., 30, 92-96, https://doi.org/10.24412/1609-2163-2023-2-92-96.
- Xu, L., Huang, X., Lou, Y., Xie, W., and Zhao, H. (2022) Regulation of apoptosis, autophagy and ferroptosis by non-coding RNAs in metastatic non-small cell lung cancer (Review), Exp. Ther. Med., 23, 352, https://doi.org/10.3892/etm.2022.11279.
- Lu, X., Kang, N., Ling, X., Pan, M., Du, W., and Gao, S. (2021) MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis, Front. Oncol., 11, 759346, https://doi.org/10.3389/fonc.2021.759346.
- Huang, Z., Liang, F., Wu, J., Huang, Z., Li, Y., Huang, X., and Liu, Z. (2024) Implications of GCLC in prognosis and immunity of lung adenocarcinoma and multi-omics regulation mechanisms, BMC Pulm. Med., 24, 239, https://doi.org/10.1186/s12890-024-03052-3.
- Lai, Y., Zhang, Z., Li, J., Li, W., Huang, Z., Zhang, C., Li, X., and Zhao, J. (2019) STYK1/NOK correlates with ferroptosis in non-small cell lung carcinoma, Biochem. Biophys. Res. Commun., 519, 659-666, https://doi.org/10.1016/j.bbrc.2019.09.032.
- Bersuker, K., Hendricks, J. M., Li, Z., Magtanong, L., Ford, B., Tang, P. H., Roberts, M. A., Tong, B., Maimone, T. J., Zoncu, R., Bassik, M. C., Nomura, D. K., Dixon, S. J., and Olzmann, J. A. (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis, Nature, 575, 688-692, https://doi.org/10.1038/s41586-019-1705-2.
- Zhang, Y., Li, S., Li, F., Lv, C., and Yang, Q. K. (2021) High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma, Biology Direct, 16, 10, https://doi.org/10.1186/s13062-021-00294-7.
- Zhao, Q., Sun, Z., Pan, Y., Jing, Q., Li, W., and Wang, C. (2023) Role of ALOX5 in non-small cell lung cancer: a potential therapeutic target associated with immune cell infiltration, Zhong Nan Da Xue Xue Bao Yi Xue Ban, 48, 311-322.
- Zhang, M., Zheng, Z., Wang, S., Liu, R., Zhang, M., Guo, Z., Wang, H., and Tan, W. (2024) The role of circRNAs and miRNAs in drug resistance and targeted therapy responses in breast cancer, Cancer Drug Resist., 7, 30, https://doi.org/10.20517/cdr.2024.62.
- Iwakawa, H. O., and Tomari, Y. (2022) Life of RISC: Formation, action, and degradation of RNA-induced silencing complex, Mol. Cell, 82, 30-43, https://doi.org/10.1016/j.molcel.2021.11.026.
- Zhang, X., Wang, W., Zhu, W., Dong, J., Cheng, Y., Yin, Z., and Shen, F. (2019) Mechanisms and functions of long non-coding RNAs at multiple regulatory levels, Int. J. Mol. Sci., 20, 5573, https://doi.org/10.3390/ijms20225573.
- Han, S., Yang, X., Zhuang, J., Zhou, Q., Wang, J., Ru, L., Niu, F., and Mao, W. (2024) α-Hederin promotes ferroptosis and reverses cisplatin chemoresistance in non-small cell lung cancer, Aging, 16, 1298-1317, https://doi.org/10.18632/aging.205408.
- Zhang, L., Xu, Y., Cheng, Z., Zhao, J., Wang, M., Sun, Y., Mi, Z., Yuan, Z., and Wu, Z. (2024) The EGR1/miR-139/NRF2 axis orchestrates radiosensitivity of non-small-cell lung cancer via ferroptosis, Cancer Lett., 595, 217000, https://doi.org/10.1016/j.canlet.2023.217000.
- Shi, Z., Jiang, T., Sun, X., Peng, L., Cao, B., and Wang, Y. (2024) HDAC10 inhibits non-small-cell lung cancer cell ferroptosis through the microRNA-223-5p-SLC7A11 axis, Toxicol. Res., 13, tfae164, https://doi.org/10.1093/toxres/tfae164.
- Fu, R., You, Y., Wang, Y., Wang, J., Lu, Y., Gao, R., Pang, M., Yang, P., and Wang, H. (2024) Sanggenol L induces ferroptosis in non-small cell lung cancer cells via regulating the miR-26a-1-3p/MDM2/p53 signaling pathway, Biochem. Pharmacol., 226, 116345, https://doi.org/10.1016/j.bcp.2024.116345.
- Zhang, Y., Qian, J., Fu, Y., Wang, Z., Hu, W., Zhang, J., Wang, Y., Guo, Y., Chen, W., Zhang, Y., Wang, X., Xie, Z., Ye, H., Ye, F., and Zuo, Z. (2024) Inhibition of DDR1 promotes ferroptosis and overcomes gefitinib resistance in non-small cell lung cancer, Biochim. Biophys. Acta, 1870, 167447, https://doi.org/10.1016/j.bbadis.2024.167447.
- Ding, D., Shang, W., Shi, K., Ying, J., Wang, L., Chen, Z., and Zhang, C. (2024) FTO/m6A mediates miR-138-5p maturation and regulates gefitinib resistance of lung adenocarcinoma cells by miR-138-5p/LCN2 axis, BMC Cancer, 24, 1270, https://doi.org/10.1186/s12885-024-13036-5.
- Wei, D., Ke, Y. Q., Duan, P., Zhou, L., Wang, C. Y., and Cao, P. (2021) MicroRNA-302a-3p induces ferroptosis of non-small cell lung cancer cells via targeting ferroportin, Free Radic. Res., 55, 821-830, https://doi.org/10.1080/10715762.2021.1947503.
- Deng, S. H., Wu, D. M., Li, L., Liu, T., Zhang, T., Li, J., Yu, Y., He, M., Zhao, Y. Y., Han, R., and Xu, Y. (2021) miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549, Biochem. Biophys. Res. Commun., 549, 54-60, https://doi.org/10.1016/j.bbrc.2021.02.077.
- Han, B., Liu, Y., Zhang, Q., and Liang, L. (2023) Propofol decreases cisplatin resistance of non-small cell lung cancer by inducing GPX4-mediated ferroptosis through the miR-744-5p/miR-615-3p axis, J. Proteomics, 274, 104777, https://doi.org/10.1016/j.jprot.2022.104777.
- Song, Z., Jia, G., Ma, P., and Cang, S. (2021) Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis, Life Sci., 276, 119399, https://doi.org/10.1016/j.lfs.2021.119399.
- Liu, L., Guan, X., Zhao, Y., Wang, X., Yin, C., Liu, Q., and Li, H. (2023) Mechanism of miR-186-5p regulating PRKAA2 to promote ferroptosis in lung adenocarcinoma cells, Chinese J. Lung Cancer, 26, 813-821, https://doi.org/10.3779/j.issn.1009-3419.2023.102.39.
- Zhang, R., Pan, T., Xiang, Y., Zhang, M., Xie, H., Liang, Z., Chen, B., Xu, C., Wang, J., Huang, X., Zhu, Q., Zhao, Z., Gao, Q., Wen, C., Liu, W., Ma, W., Feng, J., Sun, X., Duan, T., Lai-Han Leung, E. L.-H., Xie, T., Wu, Q., and Sui, X. (2021) Curcumol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis, Bioactive Mater., 13, 23-36, https://doi.org/10.1016/j.bioactmat.2021.11.013.
- Xu, C., Jiang, Z. B., Shao, L., Zhao, Z. M., Fan, X. X., Sui, X., Yu, L. L., Wang, X. R., Zhang, R. N., Wang, W. J., Xie, Y. J., Zhang, Y. Z., Nie, X. W., Xie, C., Huang, J. M., Wang, J., Wang, J., Leung, E. L., and Wu, Q. B. (2023) β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer, Pharmacol. Res., 191, 106739, https://doi.org/10.1016/j.phrs.2023.106739.
- Bi, G., Liang, J., Zhao, M., Zhang, H., Jin, X., Lu, T., Zheng, Y., Bian, Y., Chen, Z., Huang, Y., Besskaya, V., Zhan, C., Wang, Q., and Tan, L. (2022) miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways, Mol. Ther. Nucleic Acids, 28, 366-386, https://doi.org/10.1016/j.omtn.2022.03.020.
- Liu, L., Su, S., Ye, D., Yu, Z., Lu, W., and Li, X. (2022) Long non-coding RNA OGFRP1 regulates cell proliferation and ferroptosis by miR-299-3p/SLC38A1 axis in lung cancer, Anticancer Drugs, 33, 826-839, https://doi.org/10.1097/CAD.0000000000001328.
- Tai, F., Zhai, R., Ding, K., Zhang, Y., Yang, H., Li, H., Wang, Q., Cao, Z., Ge, C., Fu, H., Xiao, F., and Zheng, X. (2024) Long non coding RNA lung cancer associated transcript 1 regulates ferroptosis via microRNA 34a 5p mediated GTP cyclohydrolase 1 downregulation in lung cancer cells, Int. J. Oncol., 64, 64, https://doi.org/10.3892/ijo.2024.5652.
- Dai, N., Ma, H., and Feng, Y. (2023) Silencing of long non-coding RNA SDCBP2-AS1/microRNA-656-3p/CRIM1 axis promotes ferroptosis of lung cancer cells, Cell. Mol. Biol., 69, 189-194, https://doi.org/10.14715/cmb/2023.69.9.29.
- Huang, J., Deng, C., Guo, T., Chen, X., Chen, P., Du, S., and Lu, M. (2023) Cinobufotalin induces ferroptosis to suppress lung cancer cell growth by lncRNA LINC00597/hsa-miR-367-3p/TFRC pathway via resibufogenin, Anticancer Agents Med. Chem., 23, 717-725, https://doi.org/10.2174/1871520622666221010092922.
- Zhao, P., Ren, X., Zhang, Z., Duan, Z., Yang, X., Jin, J., and Hu, J. (2024) Blocking METTL3-mediated lncRNA FENDRR silence reverses cisplatin resistance of lung adenocarcinoma through activating TFRC-mediated ferroptosis pathway, J. Mol. Histol., 56, 21, https://doi.org/10.1007/s10735-024-10276-4.
- An, J., Shi, J., Yang, C., Luo, J., Li, Y., Ren, J., Lv, Y., and Zhang, Y. (2024) Regulation of tumorigenesis and ferroptosis in non-small cell lung cancer by a novel BBOX1-AS1/miR-326/PROM2 axis, Mol. Cell. Biochem., 479, 2143-2155, https://doi.org/10.1007/s11010-023-04829-4.
- Zhen, S., Jia, Y., Zhao, Y., Wang, J., Zheng, B., Liu, T., Duan, Y., Lv, W., Wang, J., Xu, F., Liu, Y., Zhang, Y., and Liu, L. (2024) NEAT1_1 confers gefitinib resistance in lung adenocarcinoma through promoting AKR1C1-mediated ferroptosis defence, Cell Death Discov., 10, 131, https://doi.org/10.1038/s41420-024-01892-w.
- Wang, M., Mao, C., Ouyang, L., Liu, Y., Lai, W., Liu, N., Shi, Y., Chen, L., Xiao, D., Yu, F., Wang, X., Zhou, H., Cao, Y., Liu, S., Yan, Q., Tao, Y., and Zhang, B. (2019) Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA, Cell Death Differ., 26, 2329-2343, https://doi.org/10.1038/s41418-019-0304-y.
- Zhang, N., Huang, J., Xu, M., and Wang, Y. (2022) LncRNA T-UCR Uc.339/miR-339/SLC7A11 axis regulates the metastasis of ferroptosis-induced lung adenocarcinoma, J. Cancer, 13, 1945-1957, https://doi.org/10.7150/jca.65017.
- Peng, X., Yang, R., Peng, W., Zhao, Z., Tu, G., He, B., Cai, Q., Shi, S., Yin, W., Yu, F., Tao, Y., and Wang, X. (2022) Overexpression of LINC00551 promotes autophagy-dependent ferroptosis of lung adenocarcinoma via upregulating DDIT4 by sponging miR-4328, PeerJ, 10, e14180, https://doi.org/10.7717/peerj.14180.
- Du, L., Xu, G., Zhang, X., Zhang, Z., Yang, Y., Teng, H., and Yang, T. (2024) AQP4-AS1 can regulate the expression of ferroptosis-related regulator ALOX15 through competitive binding with miR-4476 in lung adenocarcinoma, Glob. Med. Genet., 11, 241-250, https://doi.org/10.1055/s-0044-1789199.
- Gai, C., Liu, C., Wu, X., Yu, M., Zheng, J., Zhang, W., Lv, S., and Li, W. (2020) MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells, Cell Death Dis., 11, 751, https://doi.org/10.1038/s41419-020-02939-3.
- Mao, C., Wang, X., Liu, Y., Wang, M., Yan, B., Jiang, Y., Shi, Y., Shen, Y., Liu, X., Lai, W., Yang, R., Xiao, D., Cheng, Y., Liu, S., Zhou, H., Cao, Y., Yu, W., Muegge, K., Yu, H., and Tao, Y. (2018) A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53, Cancer Res., 78, 3484-3496, https://doi.org/10.1158/0008-5472.CAN-17-3454.
- Chen, H., Wang, L., Liu, J., Wan, Z., Zhou, L., Liao, H., and Wan, R. (2023) LncRNA ITGB2-AS1 promotes cisplatin resistance of non-small cell lung cancer by inhibiting ferroptosis via activating the FOSL2/NAMPT axis, Cancer Biol. Ther., 24, 2223377, https://doi.org/10.1080/15384047.2023.2223377.
- Gao, G. B., Chen, L., Pan, J. F., Lei, T., Cai, X., Hao, Z., Wang, Q., Shan, G., and Li, J. (2024) LncRNA RGMB-AS1 inhibits HMOX1 ubiquitination and NAA10 activation to induce ferroptosis in non-small cell lung cancer, Cancer Lett., 590, 216826, https://doi.org/10.1016/j.canlet.2024.216826.
- Yao, F., Zhao, Y., Wang, G., Zhao, M., Hong, X., Ye, Z., Dong, F., Li, W., and Deng, Q. (2024) Exosomal lncRNA ROR1-AS1 from cancer-associated fibroblasts inhibits ferroptosis of lung cancer cells through the IGF2BP1/SLC7A11 signal axis, Cell. Signal., 120, 111221, https://doi.org/10.1016/j.cellsig.2024.111221.
- Sui, X., Hu, N., Zhang, Z., Wang, Y., Wang, P., and Xiu, G. (2021) ASMTL-AS1 impedes the malignant progression of lung adenocarcinoma by regulating SAT1 to promote ferroptosis, Pathol. Int., 71, 741-751, https://doi.org/10.1111/pin.13158.
- Wu, H., and Liu, A. (2021) Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer, J. Int. Med. Res., 49, 300060521996183, https://doi.org/10.1177/0300060521996183.
- Shi, Z., Zhang, H., Shen, Y., Zhang, S., Zhang, X., Xu, Y., and Sun, D. (2023) SETD1A-mediated H3K4me3 methylation upregulates lncRNA HOXC-AS3 and the binding of HOXC-AS3 to EP300 and increases EP300 stability to suppress the ferroptosis of NSCLC cells, Thorac. Cancer, 14, 2579-2590, https://doi.org/10.1111/1759-7714.15037.
Дополнительные файлы


