FERROPTOSIS MECHANISMS AND NON-CODING RNAs IN NON-SMALL CELL LUNG CANCER

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Ferroptosis is an iron-dependent type of regulated cell death induced by hyperoxidation of polyunsaturated fatty acids within the phospholipids of the cytoplasmic membrane. According to recent studies, four key regulatory pathways of this process have been identified, with the glutathione pathway (SLC7A11/SLC3A2)/GSH/GPX4) being central and the most extensively studied. The functioning of all ferroptosis control systems is ensured by a multilayered network of protein-coding and regulatory genes, and disturbances in their expression may serve as a trigger for tumor cell transformation. Ferroptosis, along with other types of programmed cell death, plays a key role in the pathogenesis of many cancers, including non-small cell lung cancer (NSCLC). This review provides a detailed overview of the key molecular mechanisms of ferroptosis and summarizes the results of experimental studies demonstrating the involvement of ferroptosis-associated non-coding RNAs (microRNAs and long non-coding RNAs) in the development and progression of NSCLC. Special attention is given to the prospects of using anti-ferroptotic and pro-ferroptotic ncRNAs in NSCLC therapy, based on targeted modulation of their expression levels to induce ferroptosis in tumor cells.

Авторлар туралы

Al. Selezneva

Research Institute of General Pathology and Pathophysiology

Moscow, Russia

A. Burdennyy

Research Institute of General Pathology and Pathophysiology; N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: burdennyy@gmail.com
Moscow, Russia; Moscow, Russia

An. Selezneva

Research Institute of General Pathology and Pathophysiology

Moscow, Russia

E. Filippova

Research Institute of General Pathology and Pathophysiology

Moscow, Russia

S. Lukina

Research Institute of General Pathology and Pathophysiology

Moscow, Russia

E. Braga

Research Institute of General Pathology and Pathophysiology

Moscow, Russia

V. Loginov

Research Institute of General Pathology and Pathophysiology

Moscow, Russia

Әдебиет тізімі

  1. Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico-Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., et al. (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ., 25, 486-541, https://doi.org/10.1038/s41418-017-0012-4.
  2. Zhang, Q., Fan, X., Zhang, X., and Ju, S. (2023) Ferroptosis in tumors and its relationship to other programmed cell death: role of non-coding RNAs, J. Translat. Med., 21, 514, https://doi.org/10.1186/s12967-023-04370-6.
  3. Xiang, S., Yan, W., Ren, X., Feng, J., and Zu, X. (2024) Role of ferroptosis and ferroptosis-related long non-coding RNA in breast cancer, Cell. Mol. Biol. Lett., 29, 40, https://doi.org/10.1186/s11658-024-00560-2.
  4. Yu, Y., Yan, Y., Niu, F., Wang, Y., Chen, X., Su, G., Liu, Y., Zhao, X., Qian, L., Liu, P., and Xiong, Y. (2021) Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases, Cell Death Discov., 7, 193, https://doi.org/10.1038/s41420-021-00579-w.
  5. Zhou, Q., Meng, Y., Li, D., Yao, L., Le, J., Liu, Y., Sun, Y., Zeng, F., Chen, X., and Deng, G. (2024) Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies, Signal Transduct. Targeted Ther., 9, 55, https://doi.org/10.1038/s41392-024-01769-5.
  6. Jiang, X., Stockwell, B. R., and Conrad, M. (2021) Ferroptosis: mechanisms, biology and role in disease, Nat. Rev. Mol. Cell Biol., 22, 266-282, https://doi.org/10.1038/s41580-020-00324-8.
  7. Chen, Y., Li, X., Wang, S., Miao, R., and Zhong, J. (2023) Targeting iron metabolism and ferroptosis as novel therapeutic approaches in cardiovascular diseases, Nutrients, 15, 591, https://doi.org/10.3390/nu15030591.
  8. Xiang, Y., Song, X., and Long, D. (2024) Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases, Arch. Toxicol., 98, 579-615, https://doi.org/10.1007/s00204-023-03660-8.
  9. Lai, B., Wu, C. H., Wu, C. Y., Luo, S. F., and Lai, J. H. (2022) Ferroptosis and autoimmune diseases, Frontiers in immunology, 13, 916664, https://doi.org/10.3389/fimmu.2022.916664.
  10. Zou, J., Wang, L., Tang, H., Liu, X., Peng, F., and Peng, C. (2021) Ferroptosis in non-small cell lung cancer: progression and therapeutic potential on it, Int. J. Mol. Sci., 22, 13335, https://doi.org/10.3390/ijms222413335.
  11. Zhang, X., Li, X., Xia, R., and Zhang, H. S. (2024) Ferroptosis resistance in cancer: recent advances and future perspectives, Biochem. Pharmacol., 219, 115933, https://doi.org/10.1016/j.bcp.2023.115933.
  12. Wang, Y., Zheng, L., Shang, W., Yang, Z., Li, T., Liu, F., Shao, W., Lv, L., Chai, L., Qu, L., Xu, Q., Du, J., Liang, X., Zeng, J., and Jia, J. (2022) Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer, Cell Death Differ., 29, 2190-2202, https://doi.org/10.1038/s41418-022-01008-w.
  13. Zhang, H., Chen, N., Ding, C., Zhang, H., Liu, D., and Liu, S. (2024) Ferroptosis and EMT resistance in cancer: a comprehensive review of the interplay, Front. Oncol., 14, 1344290, https://doi.org/10.3389/fonc.2024.1344290.
  14. Farooqi, A. A., Kapanova, G., Kalmakhanov, S., Kussainov, A. Z., and Datkhayeva, Z. (2023) Regulation of ferroptosis by non-coding RNAs: mechanistic insights, J. Pharmacol. Exp. Ther., 384, 20-27, https://doi.org/10.1124/jpet.121.001225.
  15. Liu, X., Olszewski, K., Zhang, Y., Lim, E. W., Shi, J., Zhang, X., Zhang, J., Lee, H., Koppula, P., Lei, G., Zhuang, L., You, M. J., Fang, B., Li, W., Metallo, C. M., Poyurovsky, M. V., and Gan, B. (2020) Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer, Nat. Cell Biol., 22, 476-486, https://doi.org/10.1038/s41556-020-0496-x.
  16. Калинина, Е. В., Гаврилюк, Л. А. (2020) Синтез глутатиона в опухолевых клетках, Биохимия, 85, 1051-1065, https://doi.org/10.31857/S0320972520080059.
  17. Seibt, T. M., Proneth, B., and Conrad, M. (2019) Role of GPX4 in ferroptosis and its pharmacological implication, Free Radic. Biol. Med., 133, 144-152, https://doi.org/10.1016/j.freeradbiomed.2018.09.014.
  18. Dixon, S. J., Patel, D. N., Welsch, M., Skouta, R., Lee, E. D., Hayano, M., Thomas, A. G., Gleason, C. E., Tatonetti, N. P., Slusher, B. S., and Stockwell, B. R. (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis, eLife, 3, e02523, https://doi.org/10.7554/eLife.02523.
  19. Giustizieri, M., Petrillo, S., D'Amico, J., Torda, C., Quatrana, A., Vigevano, F., Specchio, N., Piemonte, F., and Cherubini, E. (2023) The ferroptosis inducer RSL3 triggers interictal epileptiform activity in mice cortical neurons, Front. Cell. Neurosci., 17, 1213732, https://doi.org/10.3389/fncel.2023.1213732.
  20. Zhang, X., Zheng, X., Ying, X., Xie, W., Yin, Y., and Wang, X. (2023) CEBPG suppresses ferroptosis through transcriptional control of SLC7A11 in ovarian cancer, J. Translat. Med., 21, 334, https://doi.org/10.1186/s12967-023-04136-0.
  21. Wu, F., Xiong, G., Chen, Z., Lei, C., Liu, Q., and Bai, Y. (2022) SLC3A2 inhibits ferroptosis in laryngeal carcinoma via mTOR pathway, Hereditas, 159, 6, https://doi.org/10.1186/s41065-022-00225-0.
  22. Yang, Y., Lin, J., Guo, S., Xue, X., Wang, Y., Qiu, S., Cui, J., Ma, L., Zhang, X., and Wang, J. (2020) RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer, Cancer Cell Int., 20, 587, https://doi.org/10.1186/s12935-020-01689-8.
  23. Xu, Z., Wang, X., Sun, W., Xu, F., Kou, H., Hu, W., Zhang, Y., Jiang, Q., Tang, J., and Xu, Y. (2023) RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer, Redox Biol., 68, 102952, https://doi.org/10.1016/j.redox.2023.102952.
  24. Свищева П. О., Каниболоцкий А. А., Яремин Б. И., Аносова Е. Ю., Карина Я. С., Казиахмедова З. Г., Новрузбеков М. С. (2024) Малоизученные мишени патогенеза ишемически-реперфузионного повреждения при трансплантации печени, Трансплантология, 16, 244-259, https://doi.org/10.23873/2074-0506-2024-16-2-244-259.
  25. Doll, S., Proneth, B., Tyurina, Y. Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., Prokisch, H., Trümbach, D., Mao, G., Qu, F., Bayir, H., Füllekrug, J., Scheel, C. H., Wurst, W., Schick, J. A., Kagan, V. E., Friedmann Angeli, J. P., and Conrad, M. (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat. Chem. Biol., 13, 91-98, https://doi.org/10.1038/nchembio.2239.
  26. Magtanong, L., Ko, P. J., To, M., Cao, J. Y., Forcina, G. C., Tarangelo, A., Ward, C. C., Cho, K., Patti, G. J., Nomura, D. K., Olzmann, J. A., and Dixon, S. J. (2019) Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state, Cell Chem. Biol., 26, 420-432.e9, https://doi.org/10.1016/j.chembiol.2018.11.016.
  27. Feng, S., Rao, Z., Zhang, J., She, X., Chen, Y., Wan, K., Li, H., Zhao, C., Feng, Y., Wang, G., Hu, J., and Luo, X. (2023) Inhibition of CARM1-mediated methylation of ACSL4 promotes ferroptosis in colorectal cancer, Adv. Sci., 10, e2303484, https://doi.org/10.1002/advs.202303484.
  28. Wen, F., Ling, H., Ran, R., Li, X., Wang, H., Liu, Q., Li, M., and Yu, T. (2025) LPCAT3 regulates the proliferation and metastasis of serous ovarian cancer by modulating arachidonic acid, Translat. Oncol., 52, 102256, https://doi.org/10.1016/j.tranon.2024.102256.
  29. Liu, T., Xu, X., Li, J., Bai, M., Zhu, W., Liu, Y., Liu, S., Zhao, Z., Li, T., Jiang, N., Bai, Y., Jin, Q., Zhang, Y., Zheng, Y., Zhou, S., Shan, S., Sun, Y., Liang, G., Luo, Y., Chen, X., Guo, H., and Yang, R. (2023) ALOX5 deficiency contributes to bladder cancer progression by mediating ferroptosis escape, Cell Death Dis., 14, 800, https://doi.org/10.1038/s41419-023-06333-7.
  30. Fu, C., Cao, N., Zeng, S., Zhu, W., Fu, X., Liu, W., and Fan, S. (2023) Role of mitochondria in the regulation of ferroptosis and disease, Front. Med., 10, 1301822, https://doi.org/10.3389/fmed.2023.1301822.
  31. Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., Koppula, P., Wu, S., Zhuang, L., Fang, B., Poyurovsky, M. V., Olszewski, K., and Gan, B. (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer, Nature, 593, 586-590, https://doi.org/10.1038/s41586-021-03539-7.
  32. Kraft, V. A. N., Bezjian, C. T., Pfeiffer, S., Ringelstetter, L., Müller, C., Zandkarimi, F., Merl-Pham, J., Bao, X., Anastasov, N., Kössl, J., Brandner, S., Daniels, J. D., Schmitt-Kopplin, P., Hauck, S. M., Stockwell, B. R., Hadian, K., and Schick, J. A. (2020) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling, ACS Central Sci., 6, 41-53, https://doi.org/10.1021/acscentsci.9b01063.
  33. Feng, B., Su, W., Guo, X., Ding, T., Duan, Y., Hu, L., and Yu, M. (2024) MDH2 regulates the sensitivity of clear cell renal cell carcinoma to ferroptosis through its interaction with FSP1, Cell Death Discov., 10, 363, https://doi.org/10.1038/s41420-024-02137-6.
  34. Peng, Y., Zheng, W., Chen, Y., Lei, X., Yang, Z., Yang, Y., Liang, W., Sun, K., Li, G., and Yu, J. (2024) POLQ inhibition attenuates the stemness and ferroptosis resistance in gastric cancer cells via downregulation of dihydroorotate dehydrogenase, Cell Death Dis., 15, 248, https://doi.org/10.1038/s41419-024-06618-5.
  35. Hu, Q., Wei, W., Wu, D., Huang, F., Li, M., Li, W., Yin, J., Peng, Y., Lu, Y., Zhao, Q., and Liu, L. (2022) Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis, Front. Cell Dev. Biol., 10, 810327, https://doi.org/10.3389/fcell.2022.810327.
  36. Yu, X., Cheng, L., Liu, S., Wang, M., Zhang, H., Wang, X., Zhang, H., Yang, Z., and Wu, S. (2024) Correlation between ferroptosis and adriamycin resistance in breast cancer regulated by transferrin receptor and its molecular mechanism, FASEB J., 38, e23550, https://doi.org/10.1096/fj.202302597R.
  37. Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J., and Jiang, X. (2016) Ferroptosis is an autophagic cell death process, Cell Res., 26, 1021-1032, https://doi.org/10.1038/cr.2016.95.
  38. Gao, G., Li, J., Zhang, Y., and Chang, Y. Z. (2019) Cellular iron metabolism and regulation, Adv. Exp. Med. Biol., 1173, 21-32, https://doi.org/10.1007/978-981-13-9589-5_2.
  39. Vogt, A. S., Arsiwala, T., Mohsen, M., Vogel, M., Manolova, V., and Bachmann, M. F. (2021) On iron metabolism and its regulation, Int. J. Mol. Sci., 22, 4591, https://doi.org/10.3390/ijms22094591.
  40. Wolff, N. A., Garrick, M. D., Zhao, L., Garrick, L. M., Ghio, A. J., and Thévenod, F. (2018) A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese, Sci. Rep., 8, 211, https://doi.org/10.1038/s41598-017-18584-4.
  41. Lipper, C. H., Stofleth, J. T., Bai, F., Sohn, Y. S., Roy, S., Mittler, R., Nechush tai, R., Onuchic, J. N., and Jennings, P. A. (2019) Redox-dependent gating of VDAC by mitoNEET, Proc. Natl. Acad. Sci. USA, 116, 19924-19929, https://doi.org/10.1073/pnas.1908271116.
  42. Li, P., Hendricks, A. L., Wang, Y., Villones, R. L. E., Lindkvist-Petersson, K., Meloni, G., Cowan, J. A., Wang, K., and Gourdon, P. (2022) Structures of Atm1 provide insight into [2Fe-2S] cluster export from mitochondria, Nat. Commun., 13, 4339, https://doi.org/10.1038/s41467-022-32006-8.
  43. Chang, H. C., Shapiro, J. S., Jiang, X., Senyei, G., Sato, T., Geier, J., Sawicki, K. T., and Ardehali, H. (2021) Augmenter of liver regeneration regulates cellular iron homeostasis by modulating mitochondrial transport of ATP-binding cassette B8, eLife, 10, e65158, https://doi.org/10.7554/eLife.65158.
  44. Wang, X., Ma, H., Sun, J., Zheng, T., Zhao, P., Li, H., and Yang, M. (2022) Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis, Biol. Trace Elem. Res., 200, 298-307, https://doi.org/10.1007/s12011-021-02627-z.
  45. Ren, G., Zhou, J., Su, Y., Yang, Q., and Li, J. (2025) TFRC promotes the proliferation, migration, and invasion of osteosarcoma cells by increasing the intracellular iron content and RRM2 expression, Front. Oncol., 15, 1567216, https://doi.org/10.3389/fonc.2025.1567216.
  46. Hu, W., Zhou, C., Jing, Q., Li, Y., Yang, J., Yang, C., Wang, L., Hu, J., Li, H., Wang, H., Yuan, C., Zhou, Y., Ren, X., Tong, X., Du, J., and Wang, Y. (2021) FTH promotes the proliferation and renders the HCC cells specifically resist to ferroptosis by maintaining iron homeostasis, Cancer Cell Int., 21, 709, https://doi.org/10.1186/s12935-021-02152-0.
  47. Jiang, H., Zeng, Y., Jiang, X., Xu, X., Zhao, L., Yuan, X., Xu, J., Zhao, M., Wu, F., and Li, G. (2024) Ketogenesis attenuated KLF5 disrupts iron homeostasis via LIF to confer oxaliplatin vulnerability in colorectal cancer, Biochim. Biophys. Acta, 1870, 167210, https://doi.org/10.1016/j.bbadis.2024.167210.
  48. Тороповский А. Н., Павлова О. Н., Викторов Д. А., Никитин А. Г. (2021) Молекулярно-генетические механизмы сигнального каскада RAS-RAF-MEK-ERK, связанные с развитием опухолевого процесса и назначением таргетных препаратов при колоректальном раке, Вестник медицинского института «РЕАВИЗ». Реабилитация, Врач и Здоровье, 4, 25-35, https://doi.org/10.20340/vmi-rvz.2021.4.MORPH.3.
  49. Poursaitidis, I., Wang, X., Crighton, T., Labuschagne, C., Mason, D., Cramer, S. L., Triplett, K., Roy, R., Pardo, O. E., Seckl, M. J., Rowlinson, S. W., Stone, E., and Lamb, R. F. (2017) Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine, Cell Rep., 18, 2547-2556, https://doi.org/10.1016/j.celrep.2017.02.054.
  50. Hu, K., Li, K., Lv, J., Feng, J., Chen, J., Wu, H., Cheng, F., Jiang, W., Wang, J., Pei, H., Chiao, P. J., Cai, Z., Chen, Y., Liu, M., and Pang, X. (2020) Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma, J. Clin. Invest., 130, 1752-1766, https://doi.org/10.1172/JCI124049.
  51. Müller, F., Lim, J. K. M., Bebber, C. M., Seidel, E., Tishina, S., Dahlhaus, A., Stroh, J., Beck, J., Yapici, F. I., Nakayama, K., Torres Fernández, L., Brägelmann, J., Leprivier, G., and von Karstedt, S. (2023) Elevated FSP1 protects KRAS-mutated cells from ferroptosis during tumor initiation, Cell Death Differ., 30, 442-456, https://doi.org/10.1038/s41418-022-01096-8.
  52. Михаленко Е. П., Щаюк А. Н., Кильчевский А. В. (2019) Сигнальные пути: механизм регуляции пролиферации и выживаемости опухолевых клеток, Мол. Прикл. Генет., 26, 145-157, https://doi.org/10.24411/1682-9931-2019-10015.
  53. Zhang, Y., Swanda, R. V., Nie, L., Liu, X., Wang, C., Lee, H., Lei, G., Mao, C., Koppula, P., Cheng, W., Zhang, J., Xiao, Z., Zhuang, L., Fang, B., Chen, J., Qian, S. B., and Gan, B. (2021) mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation, Nat. Commun., 12, 1589, https://doi.org/10.1038/s41467-021-21841-w.
  54. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., and Sabatini, D. M. (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids, Cell, 141, 290-303, https://doi.org/10.1016/j.cell.2010.02.024.
  55. Yi, J., Zhu, J., Wu, J., Thompson, C. B., and Jiang, X. (2020) Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis, Proc. Natl. Acad. Sci. USA, 117, 31189-31197, https://doi.org/10.1073/pnas.2017152117.
  56. Jiang, L., Kon, N., Li, T., Wang, S. J., Su, T., Hibshoosh, H., Baer, R., and Gu, W. (2015) Ferroptosis as a p53-mediated activity during tumour suppression, Nature, 520, 57-62, https://doi.org/10.1038/nature14344.
  57. Xie, Y., Zhu, S., Song, X., Sun, X., Fan, Y., Liu, J., Zhong, M., Yuan, H., Zhang, L., Billiar, T. R., Lotze, M. T., Zeh, H. J., 3rd, Kang, R., Kroemer, G., and Tang, D. (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity, Cell Rep., 20, 1692-1704, https://doi.org/10.1016/j.celrep.2017.07.055.
  58. Hassin, O., and Oren, M. (2023) Drugging p53 in cancer: one protein, many targets, Nat. Rev. Drug Discov., 22, 127-144, https://doi.org/10.1038/s41573-022-00571-8.
  59. Wang, C. K., Chen, T. J., Tan, G. Y. T., Chang, F. P., Sridharan, S., Yu, C. A., Chang, Y. H., Chen, Y. J., Cheng, L. T., and Hwang-Verslues, W. W. (2023) MEX3A mediates p53 degradation to suppress ferroptosis and facilitate ovarian cancer tumorigenesis, Cancer Res., 83, 251-263, https://doi.org/10.1158/0008-5472.CAN-22-1159.
  60. Zhang, X., Zheng, Q., Yue, X., Yuan, Z., Ling, J., Yuan, Y., Liang, Y., Sun, A., Liu, Y., Li, H., Xu, K., He, F., Wang, J., Wu, J., Zhao, C., and Tian, C. (2022) ZNF498 promotes hepatocellular carcinogenesis by suppressing p53-mediated apoptosis and ferroptosis via the attenuation of p53 Ser46 phosphorylation, J. Exp. Clin. Cancer Res., 41, 79, https://doi.org/10.1186/s13046-022-02288-3.
  61. Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., and Jemal, A. (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 74, 229-263, https://doi.org/10.3322/caac.21834.
  62. Planchard, D., Popat, S., Kerr, K., Novello, S., Smit, E. F., Faivre-Finn, C., Mok, T. S., Reck, M., Van Schil, P. E., Hellmann, M. D., Peters, S., and ESMO Guidelines Committee (2018) Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol., 29, iv192-iv237, https://doi.org/10.1093/annonc/mdy275.
  63. Сибилева О. Ю., Ромашкина Н. В. (2023) Эпидемиология рака легкого и роль молекулярно-генетического исследования в тераностике заболевания (краткий обзор литературы), Вестник Новых Мед. Технол., 30, 92-96, https://doi.org/10.24412/1609-2163-2023-2-92-96.
  64. Xu, L., Huang, X., Lou, Y., Xie, W., and Zhao, H. (2022) Regulation of apoptosis, autophagy and ferroptosis by non-coding RNAs in metastatic non-small cell lung cancer (Review), Exp. Ther. Med., 23, 352, https://doi.org/10.3892/etm.2022.11279.
  65. Lu, X., Kang, N., Ling, X., Pan, M., Du, W., and Gao, S. (2021) MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis, Front. Oncol., 11, 759346, https://doi.org/10.3389/fonc.2021.759346.
  66. Huang, Z., Liang, F., Wu, J., Huang, Z., Li, Y., Huang, X., and Liu, Z. (2024) Implications of GCLC in prognosis and immunity of lung adenocarcinoma and multi-omics regulation mechanisms, BMC Pulm. Med., 24, 239, https://doi.org/10.1186/s12890-024-03052-3.
  67. Lai, Y., Zhang, Z., Li, J., Li, W., Huang, Z., Zhang, C., Li, X., and Zhao, J. (2019) STYK1/NOK correlates with ferroptosis in non-small cell lung carcinoma, Biochem. Biophys. Res. Commun., 519, 659-666, https://doi.org/10.1016/j.bbrc.2019.09.032.
  68. Bersuker, K., Hendricks, J. M., Li, Z., Magtanong, L., Ford, B., Tang, P. H., Roberts, M. A., Tong, B., Maimone, T. J., Zoncu, R., Bassik, M. C., Nomura, D. K., Dixon, S. J., and Olzmann, J. A. (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis, Nature, 575, 688-692, https://doi.org/10.1038/s41586-019-1705-2.
  69. Zhang, Y., Li, S., Li, F., Lv, C., and Yang, Q. K. (2021) High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma, Biology Direct, 16, 10, https://doi.org/10.1186/s13062-021-00294-7.
  70. Zhao, Q., Sun, Z., Pan, Y., Jing, Q., Li, W., and Wang, C. (2023) Role of ALOX5 in non-small cell lung cancer: a potential therapeutic target associated with immune cell infiltration, Zhong Nan Da Xue Xue Bao Yi Xue Ban, 48, 311-322.
  71. Zhang, M., Zheng, Z., Wang, S., Liu, R., Zhang, M., Guo, Z., Wang, H., and Tan, W. (2024) The role of circRNAs and miRNAs in drug resistance and targeted therapy responses in breast cancer, Cancer Drug Resist., 7, 30, https://doi.org/10.20517/cdr.2024.62.
  72. Iwakawa, H. O., and Tomari, Y. (2022) Life of RISC: Formation, action, and degradation of RNA-induced silencing complex, Mol. Cell, 82, 30-43, https://doi.org/10.1016/j.molcel.2021.11.026.
  73. Zhang, X., Wang, W., Zhu, W., Dong, J., Cheng, Y., Yin, Z., and Shen, F. (2019) Mechanisms and functions of long non-coding RNAs at multiple regulatory levels, Int. J. Mol. Sci., 20, 5573, https://doi.org/10.3390/ijms20225573.
  74. Han, S., Yang, X., Zhuang, J., Zhou, Q., Wang, J., Ru, L., Niu, F., and Mao, W. (2024) α-Hederin promotes ferroptosis and reverses cisplatin chemoresistance in non-small cell lung cancer, Aging, 16, 1298-1317, https://doi.org/10.18632/aging.205408.
  75. Zhang, L., Xu, Y., Cheng, Z., Zhao, J., Wang, M., Sun, Y., Mi, Z., Yuan, Z., and Wu, Z. (2024) The EGR1/miR-139/NRF2 axis orchestrates radiosensitivity of non-small-cell lung cancer via ferroptosis, Cancer Lett., 595, 217000, https://doi.org/10.1016/j.canlet.2023.217000.
  76. Shi, Z., Jiang, T., Sun, X., Peng, L., Cao, B., and Wang, Y. (2024) HDAC10 inhibits non-small-cell lung cancer cell ferroptosis through the microRNA-223-5p-SLC7A11 axis, Toxicol. Res., 13, tfae164, https://doi.org/10.1093/toxres/tfae164.
  77. Fu, R., You, Y., Wang, Y., Wang, J., Lu, Y., Gao, R., Pang, M., Yang, P., and Wang, H. (2024) Sanggenol L induces ferroptosis in non-small cell lung cancer cells via regulating the miR-26a-1-3p/MDM2/p53 signaling pathway, Biochem. Pharmacol., 226, 116345, https://doi.org/10.1016/j.bcp.2024.116345.
  78. Zhang, Y., Qian, J., Fu, Y., Wang, Z., Hu, W., Zhang, J., Wang, Y., Guo, Y., Chen, W., Zhang, Y., Wang, X., Xie, Z., Ye, H., Ye, F., and Zuo, Z. (2024) Inhibition of DDR1 promotes ferroptosis and overcomes gefitinib resistance in non-small cell lung cancer, Biochim. Biophys. Acta, 1870, 167447, https://doi.org/10.1016/j.bbadis.2024.167447.
  79. Ding, D., Shang, W., Shi, K., Ying, J., Wang, L., Chen, Z., and Zhang, C. (2024) FTO/m6A mediates miR-138-5p maturation and regulates gefitinib resistance of lung adenocarcinoma cells by miR-138-5p/LCN2 axis, BMC Cancer, 24, 1270, https://doi.org/10.1186/s12885-024-13036-5.
  80. Wei, D., Ke, Y. Q., Duan, P., Zhou, L., Wang, C. Y., and Cao, P. (2021) MicroRNA-302a-3p induces ferroptosis of non-small cell lung cancer cells via targeting ferroportin, Free Radic. Res., 55, 821-830, https://doi.org/10.1080/10715762.2021.1947503.
  81. Deng, S. H., Wu, D. M., Li, L., Liu, T., Zhang, T., Li, J., Yu, Y., He, M., Zhao, Y. Y., Han, R., and Xu, Y. (2021) miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549, Biochem. Biophys. Res. Commun., 549, 54-60, https://doi.org/10.1016/j.bbrc.2021.02.077.
  82. Han, B., Liu, Y., Zhang, Q., and Liang, L. (2023) Propofol decreases cisplatin resistance of non-small cell lung cancer by inducing GPX4-mediated ferroptosis through the miR-744-5p/miR-615-3p axis, J. Proteomics, 274, 104777, https://doi.org/10.1016/j.jprot.2022.104777.
  83. Song, Z., Jia, G., Ma, P., and Cang, S. (2021) Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis, Life Sci., 276, 119399, https://doi.org/10.1016/j.lfs.2021.119399.
  84. Liu, L., Guan, X., Zhao, Y., Wang, X., Yin, C., Liu, Q., and Li, H. (2023) Mechanism of miR-186-5p regulating PRKAA2 to promote ferroptosis in lung adenocarcinoma cells, Chinese J. Lung Cancer, 26, 813-821, https://doi.org/10.3779/j.issn.1009-3419.2023.102.39.
  85. Zhang, R., Pan, T., Xiang, Y., Zhang, M., Xie, H., Liang, Z., Chen, B., Xu, C., Wang, J., Huang, X., Zhu, Q., Zhao, Z., Gao, Q., Wen, C., Liu, W., Ma, W., Feng, J., Sun, X., Duan, T., Lai-Han Leung, E. L.-H., Xie, T., Wu, Q., and Sui, X. (2021) Curcumol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis, Bioactive Mater., 13, 23-36, https://doi.org/10.1016/j.bioactmat.2021.11.013.
  86. Xu, C., Jiang, Z. B., Shao, L., Zhao, Z. M., Fan, X. X., Sui, X., Yu, L. L., Wang, X. R., Zhang, R. N., Wang, W. J., Xie, Y. J., Zhang, Y. Z., Nie, X. W., Xie, C., Huang, J. M., Wang, J., Wang, J., Leung, E. L., and Wu, Q. B. (2023) β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer, Pharmacol. Res., 191, 106739, https://doi.org/10.1016/j.phrs.2023.106739.
  87. Bi, G., Liang, J., Zhao, M., Zhang, H., Jin, X., Lu, T., Zheng, Y., Bian, Y., Chen, Z., Huang, Y., Besskaya, V., Zhan, C., Wang, Q., and Tan, L. (2022) miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways, Mol. Ther. Nucleic Acids, 28, 366-386, https://doi.org/10.1016/j.omtn.2022.03.020.
  88. Liu, L., Su, S., Ye, D., Yu, Z., Lu, W., and Li, X. (2022) Long non-coding RNA OGFRP1 regulates cell proliferation and ferroptosis by miR-299-3p/SLC38A1 axis in lung cancer, Anticancer Drugs, 33, 826-839, https://doi.org/10.1097/CAD.0000000000001328.
  89. Tai, F., Zhai, R., Ding, K., Zhang, Y., Yang, H., Li, H., Wang, Q., Cao, Z., Ge, C., Fu, H., Xiao, F., and Zheng, X. (2024) Long non coding RNA lung cancer associated transcript 1 regulates ferroptosis via microRNA 34a 5p mediated GTP cyclohydrolase 1 downregulation in lung cancer cells, Int. J. Oncol., 64, 64, https://doi.org/10.3892/ijo.2024.5652.
  90. Dai, N., Ma, H., and Feng, Y. (2023) Silencing of long non-coding RNA SDCBP2-AS1/microRNA-656-3p/CRIM1 axis promotes ferroptosis of lung cancer cells, Cell. Mol. Biol., 69, 189-194, https://doi.org/10.14715/cmb/2023.69.9.29.
  91. Huang, J., Deng, C., Guo, T., Chen, X., Chen, P., Du, S., and Lu, M. (2023) Cinobufotalin induces ferroptosis to suppress lung cancer cell growth by lncRNA LINC00597/hsa-miR-367-3p/TFRC pathway via resibufogenin, Anticancer Agents Med. Chem., 23, 717-725, https://doi.org/10.2174/1871520622666221010092922.
  92. Zhao, P., Ren, X., Zhang, Z., Duan, Z., Yang, X., Jin, J., and Hu, J. (2024) Blocking METTL3-mediated lncRNA FENDRR silence reverses cisplatin resistance of lung adenocarcinoma through activating TFRC-mediated ferroptosis pathway, J. Mol. Histol., 56, 21, https://doi.org/10.1007/s10735-024-10276-4.
  93. An, J., Shi, J., Yang, C., Luo, J., Li, Y., Ren, J., Lv, Y., and Zhang, Y. (2024) Regulation of tumorigenesis and ferroptosis in non-small cell lung cancer by a novel BBOX1-AS1/miR-326/PROM2 axis, Mol. Cell. Biochem., 479, 2143-2155, https://doi.org/10.1007/s11010-023-04829-4.
  94. Zhen, S., Jia, Y., Zhao, Y., Wang, J., Zheng, B., Liu, T., Duan, Y., Lv, W., Wang, J., Xu, F., Liu, Y., Zhang, Y., and Liu, L. (2024) NEAT1_1 confers gefitinib resistance in lung adenocarcinoma through promoting AKR1C1-mediated ferroptosis defence, Cell Death Discov., 10, 131, https://doi.org/10.1038/s41420-024-01892-w.
  95. Wang, M., Mao, C., Ouyang, L., Liu, Y., Lai, W., Liu, N., Shi, Y., Chen, L., Xiao, D., Yu, F., Wang, X., Zhou, H., Cao, Y., Liu, S., Yan, Q., Tao, Y., and Zhang, B. (2019) Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA, Cell Death Differ., 26, 2329-2343, https://doi.org/10.1038/s41418-019-0304-y.
  96. Zhang, N., Huang, J., Xu, M., and Wang, Y. (2022) LncRNA T-UCR Uc.339/miR-339/SLC7A11 axis regulates the metastasis of ferroptosis-induced lung adenocarcinoma, J. Cancer, 13, 1945-1957, https://doi.org/10.7150/jca.65017.
  97. Peng, X., Yang, R., Peng, W., Zhao, Z., Tu, G., He, B., Cai, Q., Shi, S., Yin, W., Yu, F., Tao, Y., and Wang, X. (2022) Overexpression of LINC00551 promotes autophagy-dependent ferroptosis of lung adenocarcinoma via upregulating DDIT4 by sponging miR-4328, PeerJ, 10, e14180, https://doi.org/10.7717/peerj.14180.
  98. Du, L., Xu, G., Zhang, X., Zhang, Z., Yang, Y., Teng, H., and Yang, T. (2024) AQP4-AS1 can regulate the expression of ferroptosis-related regulator ALOX15 through competitive binding with miR-4476 in lung adenocarcinoma, Glob. Med. Genet., 11, 241-250, https://doi.org/10.1055/s-0044-1789199.
  99. Gai, C., Liu, C., Wu, X., Yu, M., Zheng, J., Zhang, W., Lv, S., and Li, W. (2020) MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells, Cell Death Dis., 11, 751, https://doi.org/10.1038/s41419-020-02939-3.
  100. Mao, C., Wang, X., Liu, Y., Wang, M., Yan, B., Jiang, Y., Shi, Y., Shen, Y., Liu, X., Lai, W., Yang, R., Xiao, D., Cheng, Y., Liu, S., Zhou, H., Cao, Y., Yu, W., Muegge, K., Yu, H., and Tao, Y. (2018) A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53, Cancer Res., 78, 3484-3496, https://doi.org/10.1158/0008-5472.CAN-17-3454.
  101. Chen, H., Wang, L., Liu, J., Wan, Z., Zhou, L., Liao, H., and Wan, R. (2023) LncRNA ITGB2-AS1 promotes cisplatin resistance of non-small cell lung cancer by inhibiting ferroptosis via activating the FOSL2/NAMPT axis, Cancer Biol. Ther., 24, 2223377, https://doi.org/10.1080/15384047.2023.2223377.
  102. Gao, G. B., Chen, L., Pan, J. F., Lei, T., Cai, X., Hao, Z., Wang, Q., Shan, G., and Li, J. (2024) LncRNA RGMB-AS1 inhibits HMOX1 ubiquitination and NAA10 activation to induce ferroptosis in non-small cell lung cancer, Cancer Lett., 590, 216826, https://doi.org/10.1016/j.canlet.2024.216826.
  103. Yao, F., Zhao, Y., Wang, G., Zhao, M., Hong, X., Ye, Z., Dong, F., Li, W., and Deng, Q. (2024) Exosomal lncRNA ROR1-AS1 from cancer-associated fibroblasts inhibits ferroptosis of lung cancer cells through the IGF2BP1/SLC7A11 signal axis, Cell. Signal., 120, 111221, https://doi.org/10.1016/j.cellsig.2024.111221.
  104. Sui, X., Hu, N., Zhang, Z., Wang, Y., Wang, P., and Xiu, G. (2021) ASMTL-AS1 impedes the malignant progression of lung adenocarcinoma by regulating SAT1 to promote ferroptosis, Pathol. Int., 71, 741-751, https://doi.org/10.1111/pin.13158.
  105. Wu, H., and Liu, A. (2021) Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer, J. Int. Med. Res., 49, 300060521996183, https://doi.org/10.1177/0300060521996183.
  106. Shi, Z., Zhang, H., Shen, Y., Zhang, S., Zhang, X., Xu, Y., and Sun, D. (2023) SETD1A-mediated H3K4me3 methylation upregulates lncRNA HOXC-AS3 and the binding of HOXC-AS3 to EP300 and increases EP300 stability to suppress the ferroptosis of NSCLC cells, Thorac. Cancer, 14, 2579-2590, https://doi.org/10.1111/1759-7714.15037.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».