ДВА ТИПА КРИВЫХ ДОЖИТИЯ У РАЗЛИЧНЫХ ЛИНИЙ ПРОГЕРИЧЕСКИХ МЫШЕЙ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На протяжении большей части срока жизни многих видов животных вероятность их смерти увеличивается с возрастом. Закон Гомперца утверждает, что это увеличение имеет экспоненциальную зависимость. В данной работе мы сравнивали литературные данные по кинетикам дожития у различных линий прогерических мышей. Визуальный анализ показал, что у шести из таких быстро стареющих мутантов вероятность смерти не имеет строгой зависимости от возраста. Напротив, у десяти линий прогерических мышей кривые дожития похожи на таковые контрольных животных, то есть, подчиняясь закону Гомперца, похожи по форме на перевёрнутую экспоненту. Интересно, что эти десять мутаций вызывают совершенно разные нарушения функционирования клеток. Мы предполагаем, что общее у этих мутаций – это сокращение срока жизни клеток и/или ускорение перехода в состояние senescence. Таким образом, наши данные, как и данные многих ранее опубликованных работ, указывают на то, что старение организма является следствием старения отдельных клеток.

Об авторах

С. С Соколов

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова

119992 Москва, Россия

Ф. Ф Северин

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова

Email: severin@belozersky.msu.ru
119992 Москва, Россия

Список литературы

  1. Liao, C.-Y., and Kennedy, B. K. (2014) Mouse models and aging: longevity and progeria, Curr. Top. Dev. Biol., 109, 249-285. https://doi.org/10.1016/B978-0-12-397920-9.00003-2.
  2. Gavrilov, L. A. and Gavrilova, N. S. (2015) New developments in the biodemography of aging and longevity, Gerontology, 61, 364-371, https://doi.org/10.1159/000369011.
  3. Cabral, W. A., Tavarez, U. L., Beeram, I., Yeritsyan, D., Boku, Y. D., Eckhaus, M. A., et al. (2021) Genetic reduction of mTOR extends lifespan in a mouse model of Hutchinson-Gilford Progeria syndrome, Aging Cell, 20, e13457, https://doi.org/10.1111/acel.13457.
  4. Vermeij, W. P., Dollé, M. E. T., Reiling, E., Jaarsma, D., Payan-Gomez, C., Bombardieri, C. R., et al. (2016) Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice, Nature, 537, 427-431, https://doi.org/10.1038/nature19329.
  5. Wijshake, T., Malureanu, L. A., Baker, D. J., Jeganathan, K. B., van de Sluis, B., and van Deursen, J. M. (2012) Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation, PLoS Genet., 8, e1003138, https://doi.org/10.1371/journal.pgen.1003138.
  6. Oh, Y. S., Kim, D. G., Kim, G., Choi, E.-C., Kennedy, B. K., Suh, Y., et al. (2010) Downregulation of lamin A by tumor suppressor AIMP3/p18 leads to a progeroid phenotype in mice, Aging Cell, 9, 810-822, https://doi.org/10.1111/j.1474-9726.2010.00614.x.
  7. Goldman, R. D., Shumaker, D. K., Erdos, M. R., Eriksson, M., Goldman, A. E., Gordon, L. B., et al. (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome, Proc. Natl. Acad. Sci. USA, 101, 8963-8968, https://doi.org/10.1073/pnas.0402943101.
  8. Prasher, J. M., Lalai, A. S., Heijmans-Antonissen, C., Ploemacher, R. E., Hoeijmakers, J. H. J., Touw, I. P., et al. (2005) Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1–/– mice, EMBO J., 24, 861-871, https://doi.org/10.1038/sj.emboj.7600542.
  9. Khokhlov, A. N., and Morgunova, G. V. (2017) Testing of geroprotectors in experiments on cell cultures: pros and cons, in Anti-Aging Drugs: From Basic Research to Clinical Practice (Vaiserman, A. M., ed), Royal Society of Chemistry, p. 53-74, https://doi.org/10.1039/9781782626602-00051.
  10. Shabalina, I. G., Vyssokikh, M. Y., Gibanova, N., Csikasz, R. I., Edgar, D., et al. (2017) Improved health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidant SkQ1, Aging (Albany NY), 9, 315-339, https://doi.org/10.18632/aging.101174.
  11. Choudhury, A. R., Ju, Z., Djojosubroto, M. W., Schienke, A., Lechel, A., et al. (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation, Nat. Genet., 39, 99-105, https://doi.org/10.1038/ng1937.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».