Топология полиубиквитиновых цепей в хроматосомном окружении убиквитин-лигазы E3 RNF168

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Убиквитин-лигаза E3 RNF168 суперсемейства RING является важнейшим компонентом комплекса, осуществляющего убиквитинирование гистонов H2A/H2AX вблизи двуцепочечных разрывов ДНК, что является ключевой стадией привлечения факторов репарации к месту повреждения. В настоящей работе нами однозначно показано, что RNF168 не имеет природной способности непосредственно различать архитектуру полиубиквитиновых цепей, за исключением тропности двух её убиквитин-связывающих доменов UDM1/2 к убиквитинам, соединённым через аминокислотный остаток К63. Анализ внутриклеточного хроматосомного окружения полноразмерной RNF168 и её доменов методом лиганд-индуцированного резонансного переноса биолюминесценции выявил, что C-концевая часть UDM1 ассоциирована с К63-полиубиквитиновыми цепями; RING и N-концевая часть UDM2 стерически сближены с K63- и К48-убиквитиновыми цепями, в то время как C-концевая часть UDM1 колокализована со всеми возможными вариантами убиквитина. Полученные результаты совместно с имеющимися структурными данными позволяют выдвинуть гипотезу, что C-концевая часть UDM1 связывает К63-полиубиквитиновые цепи на линкерном гистоне Н1; RING и N-концевая часть UDM2 находятся в центральной части нуклеосомы и сближены с H1 и К48-убиквитинированными альтернативными субстратами RNF168, возможно, деметилазами JMJD2A/В, в то время как C-концевая часть UDM1, вероятно, находится в области активированного остатка убиквитина, связанного с убиквитин-лигазой Е2 в составе комплекса с RNF168. Резюмируя, наши данные могут объяснить наличие большого количества протяжённых неструктурированных участков в RNF168, которые потенциально необходимы этой Е3-лигазе для корректного позиционирования доменов UDM1/2 с целью многоточечного взаимодействия со множеством партнёров в её динамическом хроматосомном окружении.

Об авторах

А. А Кудряева

Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН

Email: anna.kudriaeva@gmail.com
117997 Москва, Россия

Л. А Якубова

Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН

117997 Москва, Россия

Г. А Саратов

Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН

117997 Москва, Россия

В. И Владимиров

Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН

117997 Москва, Россия

В. М Липкин

Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН

117997 Москва, Россия

А. А Белогуров

Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН

117997 Москва, Россия

Список литературы

  1. Khanna, K. K., and Jackson, S. P. (2001) DNA double-strand breaks: Signaling, repair and the cancer connection, Nat. Genet., 27, 247-254, doi: 10.1038/85798.
  2. Jackson, S. P., and Bartek, J. (2009) The DNA-damage response in human biology and disease, Nature, 461, 1071-1078, doi: 10.1038/nature08467.
  3. Ceccaldi, R., Rondinelli, B., and D'Andrea, A. D. (2016) Repair pathway choices and consequences at the double-strand break, Trends Cell Biol., 26, 52-64, doi: 10.1016/j.tcb.2015.07.009.
  4. Price, B. D., and D'Andrea, A. D. (2013) Chromatin remodeling at DNA double-strand breaks, Cell, 152, 1344-1354, doi: 10.1016/j.cell.2013.02.011.
  5. Kim, J. J., Lee, S. Y., and Miller, K. M. (2019) Preserving genome integrity and function: the DNA damage response and histone modifications, Crit. Rev. Biochem. Mol. Biol., 54, 208-241, doi: 10.1080/10409238.2019.1620676.
  6. Bacheva, A. V., Gotmanova, N. N., Belogurov, A. A., and Kudriaeva, A. A. (2021) Control of genome through variative nature of histone-modifying ubiquitin ligases, Biochemistry (Moscow), 86, S71-S95, doi: 10.1134/S0006297921140066.
  7. Ciechanover, A. (2015) The unravelling of the ubiquitin system, Nat. Rev. Mol. Cell. Biol., 16, 322-324, doi: 10.1038/nrm3982.
  8. Kudriaeva, A. A., and Belogurov, A. A. (2019) Proteasome: a nanomachinery of creative destruction, Biochemistry (Moscow), 84, 159-192, doi: 10.1134/S0006297919140104.
  9. Kudriaeva, A. A., Livneh, I., Baranov, M. S., Ziganshin, R. H., Tupikin, A. E., Zaitseva, S. O., Kabilov, M. R., Ciechanover, A., and Belogurov, A. A. Jr. (2021) In-depth characterization of ubiquitin turnover in mammalian cells by fluorescence tracking, Cell. Chem. Biol., 28, 1192-1205, doi: 10.1016/j.chembiol.2021.02.009.
  10. Chen, Z. J., and Sun, L. J. (2009) Nonproteolytic functions of ubiquitin in cell signaling, Mol. Cell, 33, 275-286, doi: 10.1016/j.molcel.2009.01.014.
  11. Jackson, S. P., and Durocher, D. (2013) Regulation of DNA damage responses by ubiquitin and SUMO, Mol. Cell, 49, 795-807, doi: 10.1016/j.molcel.2013.01.017.
  12. Iwai, K., and Tokunaga, F. (2009) Linear polyubiquitination: a new regulator of NF-κB activation, EMBO Rep., 10, 706-713, doi: 10.1038/embor.2009.144.
  13. Matsumoto, M. L., Wickliffe, K. E., Dong, K. C., Yu, C., Bosanac, I., Bustos, D., Phu, L., Kirkpatrick, D. S., Hymowitz, S. G., Rape, M., Kelley, R. F., and Dixit, V. M. (2010) K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody, Mol. Cell, 39, 477-484, doi: 10.1016/j.molcel.2010.07.001.
  14. Uckelmann, M., and Sixma, T. K. (2017) Histone ubiquitination in the DNA damage response, DNA Repair (Amst), 56, 92-101, doi: 10.1016/j.dnarep.2017.06.011.
  15. Nishi, R. (2017) Balancing act: To be, or not to be ubiquitylated, Mutat. Res., 803-805, 43-50, doi: 10.1016/j.mrfmmm.2017.07.006.
  16. Gudjonsson, T., Altmeyer, M., Savic, V., Toledo, L., Dinant, C., Grøfte, M., Bartkova, J., Poulsen, M., Oka, Y., Bekker-Jensen, S., Mailand, N., Neumann, B., Heriche, J. K., Shearer, R., Saunders, D., Bartek, J., Lukas, J., and Lukas, C. (2012) TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes, Cell, 150, 697-709, doi: 10.1016/j.cell.2012.06.039.
  17. Gatti, M., Pinato, S., Maiolica, A., Rocchio, F., Prato, M. G., Aebersold, R., and Penengo, L. (2015) RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage, Cell Rep., 10, 226-238, doi: 10.1016/j.celrep.2014.12.021.
  18. Kudriaeva, A. A., Lipkin, V. M., and Belogurov, A. A. (2020) Topological features of histone H2A monoubiquitination, Dokl. Biochem. Biophys., 493, 193-197, doi: 10.1134/S1607672920040079.
  19. Kelliher, J., Ghosal, G., and Leung, J. W. C. (2022) New answers to the old RIDDLE: RNF168 and the DNA damage response pathway, FEBS J., 289, 2467-2480, doi: 10.1111/febs.15857.
  20. Pinato, S., Gatti, M., Scandiuzzi, C., Confalonieri, S., and Penengo, L. (2011) UMI, a novel RNF168 ubiquitin binding domain involved in the DNA damage signaling pathway, Mol. Cell. Biol., 31, 118-126, doi: 10.1128/mcb.00818-10.
  21. Takahashi, T. S., Hirade, Y., Toma, A., Sato, Y., Yamagata, A., Goto-Ito, S., Tomito, A., Nakada, S., and Fukai, S. (2018) Structural insights into two distinct binding modules for Lys63-linked polyubiquitin chains in RNF168, Nat. Commun., 9, 170, doi: 10.1038/s41467-017-02345-y.
  22. Kitevski-LeBlanc, J., Fradet-Turcotte, A., Kukic, P., Wilson, M. D., Portella, G., Yuwen, T., Panier, S., Duan, S., Canny, M. D., van Ingen, H., Arrowsmith, C. H., Rubinstein, J. L., Vendruscolo, M., Durocher, D., and Kay, L. E. (2017) The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage, Elife, 6, e23872, doi: 10.7554/eLife.23872.
  23. Pinato, S., Scandiuzzi, C., Arnaudo, N., Citterio, E., Gaudino, G., and Penengo, L. (2009) RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX, BMC Mol. Biol., 10, 55, doi: 10.1186/1471-2199-10-55.
  24. Horn, V., Uckelmann, M., Zhang, H., Eerland, J., Aarsman, I., le Paige, U. B., Davidovich, C., Sixma, T. K., and van Ingen, H. (2019) Structural basis of specific H2A K13/K15 ubiquitination by RNF168, Nat. Commun., 10, 1751, doi: 10.1038/s41467-019-09756-z.
  25. Machleidt, T., Woodroofe, C. C., Schwinn, M. K., Méndez, J., Robers, M. B., Zimmerman, K., Otto, P., Daniels, D. L., Kirkland, T. A., and Wood, K. V (2015) NanoBRET - a novel BRET platform for the analysis of protein-protein interactions, ACS Chem. Biol., 10, 1797-1804, doi: 10.1021/acschembio.5b00143.
  26. Weihs, F., Wang, J., Pfleger, K. D. G., and Dacres, H. (2020) Experimental determination of the bioluminescence resonance energy transfer (BRET) Förster distances of NanoBRET and red-shifted BRET pairs, Anal. Chim. Acta X., 6, 100059, doi: 10.1016/j.acax.2020.100059.
  27. Bednar, J., Garcia-Saez, I., Boopathi, R., Cutter, A. R., Papai, G., Reymer, A., Syed, S. H., Lone, I. N., Tonchev, O., Crucifix, C., Menoni, H., Papin, C., Skoufias, D. A., Kurumizaka, H., Lavery, R., Hamiche, A., Hayes, J. J., Schultz, P., Angelov, D., Petosa, C., and Dimitrov, S. (2017) Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1, Mol. Cell, 66, 384-397.e8, doi: 10.1016/j.molcel.2017.04.012.
  28. Panier, S., Ichijima, Y., Fradet-Turcotte, A., Leung, C. C. Y., Kaustov, L., Arrowsmith, C. H., and Durocher, D. (2012) Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks, Mol. Cell, 47, 383-395, doi: 10.1016/j.molcel.2012.05.045.
  29. Thorslund, T., Ripplinger, A., Hoffmann, S., Wild, T., Uckelmann, M., Villumsen, B., Narita, T., Sixma, T. K., Choudhary, C., Bekker-Jensen, S., and Mailand, N. (2015) Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage, Nature 527, 389-393, doi: 10.1038/nature15401.
  30. Mattiroli, F., Uckelmann, M., Sahtoe, D. D., van Dijk, W. J., and Sixma, T. K. (2014) The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A, Nat. Commun., 5, 3291, doi: 10.1038/ncomms4291.
  31. Mallette, F. A., and Richard, S. (2012) K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites, Cell Res., 22, 1221-1223, doi: 10.1038/cr.2012.58.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах