Нейрональные экзосомы как новая система сигналинга

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С каждым годом изучению нейрональных экзосом посвящается все больше и больше работ. Существенно исследован потенциал экзосом как диагностических маркеров для нейродегенеративных заболеваний, и похожие схемы поиска маркеров заимствованы для исследования психиатрических патологий. Выяснены основы биогенеза экзосом в разных типах клеток, активно идет исследование физиологического значения экзосом, проясняются многие аспекты сигналинга с их участием. При этом накоплены данные, указывающие на роль экзосомального сигналинга как на важный элемент межнейрональной коммуникации. Достаточно ли у нас оснований, чтобы назвать экзосомы новым неканоническим нейротрансмиттером в головном мозге? Ответу на этот вопрос посвящена данная дискуссионная работа, в которой автор представляет на суд научной общественности концепцию о возможной роли экзосом мозга как сигнальной системы.

Об авторах

А. А Яковлев

Институт высшей нервной деятельности и нейрофизиологии РАН;Научно-практический психоневрологический центр им. З.П. Соловьева, Департамент здравоохранения Москвы

Email: al_yakovlev@ihna.ru
117485 Москва, Россия;115419 Москва, Россия

Список литературы

  1. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., et al. (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines, J. Extracell. Vesicles, 7, 1535750, doi: 10.1080/20013078.2018.1535750.
  2. Kalluri, R., and LeBleu, V. S. (2020) The biology, function, and biomedical applications of exosomes, Science, 367, doi: 10.1126/science.aau6977.
  3. Van Niel, G., Carter, D. R. F., Clayton, A., Lambert, D. W., Raposo, G., and Vader, P. (2022) Challenges and directions in studying cell-cell communication by extracellular vesicles, Nat. Rev. Mol. Cell. Biol., 23, 369-382, doi: 10.1038/s41580-022-00460-3.
  4. Khaspeckov, L. G., and Yakovlev, A. A. (2023) Perspectives for the use of small extracellular vesicles as a transport vehicle through the blood-brain barrier, Neurochem. J., 39, 1-18.
  5. Yakovlev, A. A. (2022) Neuroprotective effects of astrocyte extracellular vesicles in stroke, Neurochem. J., 16, 121-129, doi: 10.1134/s1819712422020143.
  6. Jia, L., Zhu, M., Kong, C., Pang, Y., Zhang, H., Qiu, Q., Wei, C., Tang, Y., Wang, Q., Li, Y., Li, T., Li, F., Wang, Q., Li, Y., Wei, Y., and Jia, J. (2021) Blood neuro-exosomal synaptic proteins predict Alzheimer's disease at the asymptomatic stage, Alzheimer's Dement., 17, 49-60, doi: 10.1002/alz.12166.
  7. Wang, Y., Balaji, V., Kaniyappan, S., Krüger, L., Irsen, S., Tepper, K., Chandupatla, R., Maetzler, W., Schneider, A., Mandelkow, E., and Mandelkow, E. M. (2017) The release and trans-synaptic transmission of Tau via exosomes, Mol. Neurodegener., 12, 5, doi: 10.1186/s13024-016-0143-y.
  8. Xin, H., Li, Y., Cui, Y., Yang, J. J., Zhang, Z. G., and Chopp, M. (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats, J. Cereb. Blood Flow Metab., 33, 1711-1715, doi: 10.1038/jcbfm.2013.152.
  9. Goetzl, E. J., Kapogiannis, D., Schwartz, J. B., Lobach, I. V., Goetzl, L., Abner, E. L., Jicha, G. A., Karydas, A. M., Boxer, A., and Miller, B. L. (2016) Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer's disease, FASEB J., 30, 4141-4148, doi: 10.1096/fj.201600816R.
  10. Winston, C. N., Goetzl, E. J., Akers, J. C., Carter, B. S., Rockenstein, E. M., Galasko, D., Masliah, E., and Rissman, R. A. (2016) Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile, Alzheimer's Dement., 3, 63-72, doi: 10.1016/j.dadm.2016.04.001.
  11. Fauré, J., Lachenal, G., Court, M., Hirrlinger, J., Chatellard-Causse, C., Blot, B., Grange, J., Schoehn, G., Goldberg, Y., Boyer, V., Kirchhoff, F., Raposo, G., Garin, J., and Sadoul, R. (2006) Exosomes are released by cultured cortical neurons, Mol. Cell. Neurosci., 31, 642-648, doi: 10.1016/J.MCN.2005.12.003.
  12. Gosselin, R.-D., Meylan, P., and Decosterd, I. (2013) Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation, Front. Cell. Neurosci., 7, 251, doi: 10.3389/FNCEL.2013.00251.
  13. Krämer-Albers, E. M., Bretz, N., Tenzer, S., Winterstein, C., Möbius, W., Berger, H., Nave, K. A., Schild, H., and Trotter, J. (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin. Appl., 1, 1446-1461, doi: 10.1002/prca.200700522.
  14. Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J. P., Primdal-Bengtson, B., Dingli, F., Loew, D., Tkach, M., and Théry, C. (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes, Proc. Natl. Acad. Sci. USA, 113, E968-E977, doi: 10.1073/pnas.1521230113.
  15. Savina, A., Furlán, M., Vidal, M., and Colombo, M. I. (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells, J. Biol. Chem., 278, 20083-20090, doi: 10.1074/jbc.M301642200.
  16. Emmanouilidou, E., Melachroinou, K., Roumeliotis, T., Garbis, S. D., Ntzouni, M., Margaritis, L. H., Stefanis, L., and Vekrellis, K. (2010) Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival, J. Neurosci., 30, 6838-6851, doi: 10.1523/JNEUROSCI.5699-09.2010.
  17. Frühbeis, C., Fröhlich, D., Kuo, W. P., Amphornrat, J., Thilemann, S., Saab, A. S., Kirchhoff, F., Möbius, W., Goebbels, S., Nave, K. A., Schneider, A., Simons, M., Klugmann, M., Trotter, J., and Krämer-Albers, E. M. (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication, PLoS Biol., 11, e1001604, doi: 10.1371/journal.pbio.1001604.
  18. Kapustin, A. N., Chatrou, M. L., Drozdov, I., Zheng, Y., Davidson, S. M., Soong, D., Furmanik, M., Sanchis, P., De Rosales, R. T., Alvarez-Hernandez, D., Shroff, R., Yin, X., Muller, K., Skepper, J. N., Mayr, M., Reutelingsperger, C. P., Chester, A., Bertazzo, S., Schurgers, L. J., and Shanahan, C. M. (2015) Vascular smooth muscle cell calcification is mediated by regulated exosome secretion, Circ. Res., 116, 1312-1323, doi: 10.1161/CIRCRESAHA.116.305012.
  19. Wang, H. G., Pathan, N., Ethell, I. M., Krajewski, S., Yamaguchi, Y., Shibasaki, F., McKeon, F., Bobo, T., Franke, T. F., and Reed, J. C. (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD, Science, 284, 339-343, doi: 10.1126/science.284.5412.339.
  20. Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M., and Tsai, L. H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain, Nature, 405, 360-364, doi: 10.1038/35012636.
  21. White, B. C., Sullivan, J. M., DeGracia, D. J., O'Neil, B. J., Neumar, R. W., Grossman, L. I., Rafols, J. A., and Krause, G. S. (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury, J. Neurol. Sci., 179, 1-33, doi: 10.1016/S0022-510X(00)00386-5.
  22. Hardingham, G. E., Fukunaga, Y., and Bading, H. (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways, Nat. Neurosci., 5, 405-414, doi: 10.1038/nn835.
  23. Szydlowska, K., and Tymianski, M. (2010) Calcium, ischemia and excitotoxicity, Cell Calcium, 47, 122-129, doi: 10.1016/j.ceca.2010.01.003.
  24. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol., 1, 11-21, doi: 10.1038/35036035.
  25. Cooney, J. R., Hurlburt, J. L., Selig, D. K., Harris, K. M., and Fiala, J. C. (2002) Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane, J. Neurosci., 22, 2215-2224, doi: 10.1523/jneurosci.22-06-02215.2002.
  26. Malinow, R., and Malenka, R. C. (2002) AMPA receptor trafficking and synaptic plasticity, Annu. Rev. Neurosci., 25, 103-126, doi: 10.1146/annurev.neuro.25.112701.142758.
  27. Bredt, D. S., and Nicoll, R. A. (2003) AMPA receptor trafficking at excitatory synapses, Neuron, 40, 361-379, doi: 10.1016/S0896-6273(03)00640-8.
  28. Lee, S. H., Simonetta, A., and Sheng, M. (2004) Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons, Neuron, 43, 221-236, doi: 10.1016/j.neuron.2004.06.015.
  29. Mathieu, M., Névo, N., Jouve, M., Valenzuela, J. I., Maurin, M., Verweij, F. J., Palmulli, R., Lankar, D., Dingli, F., Loew, D., Rubinstein, E., Boncompain, G., Perez, F., and Théry, C. (2021) Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9, Nat. Commun., 12, 1-18, doi: 10.1038/s41467-021-24384-2.
  30. Lachenal, G., Pernet-Gallay, K., Chivet, M., Hemming, F. J., Belly, A., Bodon, G., Blot, B., Haase, G., Goldberg, Y., and Sadoul, R. (2011) Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity, Mol. Cell. Neurosci., 46, 409-418, doi: 10.1016/j.mcn.2010.11.004.
  31. Ghidoni, R., Paterlini, A., Albertini, V., Glionna, M., Monti, E., Schiaffonati, L., Benussi, L., Levy, E., and Binetti, G. (2011) Cystatin C is released in association with exosomes: a new tool of neuronal communication which is unbalanced in Alzheimer's disease, Neurobiol. Aging, 32, 1435-1442, doi: 10.1016/j.neurobiolaging.2009.08.013.
  32. Karttunen, J., Heiskanen, M., Joki, T., Hyysalo, A., Navarro-Ferrandis, V., Miettinen, S., Narkilahti, S., and Pitkänen, A. (2022) Effect of cell culture media on extracellular vesicle secretion from mesenchymal stromal cells and neurons, Eur. J. Cell Biol., 101, 151270, doi: 10.1016/j.ejcb.2022.151270.
  33. Olivero, G., Cisani, F., Marimpietri, D., Di Paolo, D., Gagliani, M. C., Podestà, M., Cortese, K., and Pittaluga, A. (2021) The depolarization-evoked, Ca2+-dependent release of exosomes from mouse cortical nerve endings: new insights into synaptic transmission, Front. Pharmacol., 12, 670158, doi: 10.3389/fphar.2021.670158.
  34. Pittaluga, A. (2019) Acute functional adaptations in isolated presynaptic terminals unveil synaptosomal learning and memory, Int. J. Mol. Sci., 20, 3641, doi: 10.3390/ijms20153641.
  35. Südhof, T. C. (2004) The synaptic vesicle cycle, Annu. Rev. Neurosci., 27, 509-547, doi: 10.1146/annurev.neuro.26.041002.131412.
  36. Schiera, G., Proia, P., Alberti, C., Mineo, M., Savettieri, G., and di Liegro, I. (2007) Neurons produce FGF2 and VEGF and secrete them at least in part by shedding extracellular vesicles, J. Cell. Mol. Med., 11, 1384-1394, doi: 10.1111/j.1582-4934.2007.00100.x.
  37. Goldie, B. J., Dun, M. D., Lin, M., Smith, N. D., Verrills, N. M., Dayas, C. V., and Cairns, M. J. (2014) Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons, Nucleic Acids Res., 42, 9195-9208, doi: 10.1093/nar/gku594.
  38. Morel, L., Regan, M., Higashimori, H., Ng, S. K., Esau, C., Vidensky, S., Rothstein, J., and Yang, Y. (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1, J. Biol. Chem., 288, 7105-7116, doi: 10.1074/JBC.M112.410944.
  39. Chivet, M., Javalet, C., Laulagnier, K., Blot, B., Hemming, F. J., and Sadoul, R. (2014) Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons, J. Extracell. Vesicles, 3, 24722, doi: 10.3402/jev.v3.24722.
  40. Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., Depoortere, F., Coomans, C., Vermeiren, E., Zimmermann, P., and David, G. (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes, Nat. Cell. Biol., 14, 677-685, doi: 10.1038/ncb2502.
  41. Laporte, M. H., Chi, K.Il, Caudal, L.C., Zhao, N., Schwarz, Y., Rolland, M., Martinez-Hernandez, J., Martineau, M., Chatellard, C., Denarier, E., Mercier, V., Lemaître, F., Blot, B., Moutaux, E., Cazorla, M., Perrais, D., Lanté, F., Bruns, D., Fraboulet, S., Hemming, F. J., Kirchhoff, F., and Sadoul, R. (2022) Alix is required for activity-dependent bulk endocytosis at brain synapses, PLoS Biol., 20, e3001659, doi: 10.1371/journal.pbio.3001659.
  42. Washbourne, P., Thompson, P. M., Carta, M., Costa, E. T., Mathews, J. R., Lopez-Benditó, G., Molnár, Z., Becher, M. W., Valenzuela, C. F., Partridge, L. D., and Wilson, M. C. (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis, Nat. Neurosci., 5, 19-26, doi: 10.1038/NN783.
  43. Schulze, K. L., Broadie, K., Perin, M. S., and Bellen, H. J. (1995) Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission, Cell, 80, 311-320, doi: 10.1016/0092-8674(95)90414-X.
  44. Schoch, S., Deák, F., Königstorfer, A., Mozhayeva, M., Sara, Y., Südhof, T. C., and Kavalali, E. T. (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice, Science, 294, 1117-1122, doi: 10.1126/SCIENCE.1064335.
  45. Nonet, M. L., Saifee, O., Zhao, H., Rand, J. B., and Wei, L. (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants, J. Neurosci., 18, 70-80, doi: 10.1523/JNEUROSCI.18-01-00070.1998.
  46. Gerst, J. E. (1999) SNAREs and SNARE regulators in membrane fusion and exocytosis, Cell. Mol. Life Sci., 55, 707-734, doi: 10.1007/S000180050328.
  47. Stenmark, H. (2009) Rab GTPases as coordinators of vesicle traffic, Nat. Rev. Mol. Cell Biol., 10, 513-525, doi: 10.1038/nrm2728.
  48. Shirakawa, R., Yoshioka, A., Horiuchi, H., Nishioka, H., Tabuchi, A., and Kita, T. (2000) Small GTPase Rab4 regulates Ca2+-induced α-granule secretion in platelets, J. Biol. Chem., 275, 33844-33849, doi: 10.1074/jbc.M002834200.
  49. Raffaniello, R. D., Lin, J., and Raufman, J.-P. (1996) Actions and expression of RAB-GDP dissociation inhibitor in dispersed chief cells from guinea pig stomach, Biochem. Biophys. Res. Commun., 225, 232-237, doi: 10.1006/bbrc.1996.1159.
  50. Regazzi, R., Ravazzola, M., Iezzi, M., Lang, J., Zahraoui, A., Andereggen, E., Morel, P., Takai, Y., and Wollheim, C. B. (1996) Expression, localization and functional role of small GTPases of the Rab3 family in insulin-secreting cells, J. Cell Sci., 109, 2265-2273, doi: 10.1242/jcs.109.9.2265.
  51. Smith, J., Thompson, N., Thompson, J., Armstrong, J., Hayes, B., Crofts, A., Squire, J., Teahan, C., Upton, L., and Solari, R. (1997) Rat basophilic leukaemia (RBL) cells overexpressing Rab3a have a reversible block in antigen-stimulated exocytosis, Biochem. J., 323, 321-328, doi: 10.1042/bj3230321.
  52. Holz, R. W., Brondyk, W. H., Senter, R. A., Kuizon, L., and Macara, I. G. (1994) Evidence for the involvement of Rab3A in Ca2+-dependent exocytosis from adrenal chromaffin cells, J. Biol. Chem., 269, 10229-10234, doi: 10.1016/S0021-9258(17)34051-6.
  53. Doussau, F., Clabecq, A., Henry, J.-P., Darchen, F., and Poulain, B. (1998) Calcium-dependent regulation of Rab3 in short-term plasticity, J. Neurosci., 18, 3147-3157, doi: 10.1523/jneurosci.18-09-03147.1998.
  54. Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., Moita, C. F., Schauer, K., Hume, A. N., Freitas, R. P., Goud, B., Benaroch, P., Hacohen, N., Fukuda, M., Desnos, C., Seabra, M. C., Darchen, F., Amigorena, S., Moita, L. F., and Thery, C. (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway, Nat. Cell Biol., 12, 19-30, doi: 10.1038/ncb2000.
  55. Savina, A., Fader, C. M., Damiani, M. T., and Colombo, M. I. (2005) Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner, Traffic, 6, 131-143, doi: 10.1111/j.1600-0854.2004.00257.x.
  56. Sun, C., Wang, P., Dong, W., Liu, H., Sun, J., and Zhao, L. (2020) LncRNA PVT1 promotes exosome secretion through YKT6, RAB7, and VAMP3 in pancreatic cancer, Aging, 12, 10427, doi: 10.18632/AGING.103268.
  57. Brady, S. T., Siegel, G. J., Albers, R. W., and Price, D. L. (2011) Basic Neurochemistry: Principles of Molecular, Cellular, and Medical Neurobiology, Eighth Edition, doi: 10.1016/C2009-0-00066-X.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах