Тиосульфинаты: цитотоксическая и противоопухолевая активности

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Фармакологические свойства некоторых природных соединений делают их привлекательными для лечения онкологических заболеваний. Серосодержащие тиосульфинаты, обнаруженные в растениях рода Allium, с давних пор известны как соединения с различными терапевтическими свойствами, в том числе противоопухолевыми. На протяжении последних лет активно изучалось влияние тиосульфинатов на различные стадии канцерогенеза. Исследования in vitro и in vivo показали, что тиосульфинаты ингибируют пролиферацию раковых клеток, а также индуцируют апоптоз. Цель настоящего обзора - обобщить современные данные о цитотоксических свойствах природных и синтетических тиосульфинатов и их применении в терапии рака. Обсуждаются механизмы противоопухолевого действия и молекулярные мишени этих перспективных соединений. Значительная часть обзора посвящена рассмотрению новой стратегии для лечения онкологических заболеваний - использованию метода направленной ферментной пролекарственной терапии с возможностью получения противоопухолевых тиосульфинатов in situ.

Об авторах

В. В Куликова

Институт молекулярной биологии им. В.А. Энгельгардта РАН

Email: vitviku@yandex.ru
119991 Москва, Россия

Е. А Морозова

Институт молекулярной биологии им. В.А. Энгельгардта РАН

119991 Москва, Россия

В. С Коваль

Институт молекулярной биологии им. В.А. Энгельгардта РАН

119991 Москва, Россия

П. Н Сольев

Институт молекулярной биологии им. В.А. Энгельгардта РАН

119991 Москва, Россия

Т. В Демидкина

Институт молекулярной биологии им. В.А. Энгельгардта РАН

119991 Москва, Россия

С. В Ревтович

Институт молекулярной биологии им. В.А. Энгельгардта РАН

119991 Москва, Россия

Список литературы

  1. Miekus, N., Marszałek, K., Podlacha, M., Iqbal, A., Puchalski, C., and Swiergiel, A. H. (2020) Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds, Molecules, 25, 3804, doi: 10.3390/molecules25173804.
  2. Lawson, L. D. (1996) The composition and chemistry of garlic cloves and processed garlic, in: Garlic: The Science and Therapeutic Application of Allium sativum L. and Related Species (Koch, H. P., and Lawson, L. D., eds) 2nd Edn., Williams & Wilkins, Baltimore.
  3. Borlinghaus, J., Albrecht, F., Gruhlke, M. C., Nwachukwu, I. D., and Slusarenko, A. J. (2014) Allicin: chemistry and biological properties, Molecules, 19, 12591-12618, doi: 10.3390/molecules190812591.
  4. Batiha, G., Beshbishy, A. M., Wasef, L. G., Elewa, Y. H. A., Al-Sagan, A. A., Abd El-Hack, M. E., Taha, A. E., Abd-Elhakim, Y. M., and Devkota, H. P. (2020) Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review, Nutrients, 12, 872, doi: 10.3390/nu12030872.
  5. Borlinghaus, J., Foerster Née Reiter, J., Kappler, U., Antelmann, H., Noll, U., Gruhlke, M. C. H., and Slusarenko, A. J. (2021) Allicin, the odor of freshly crushed garlic: a review of recent progress in understanding allicin's effects on cells, Molecules, 26, 1505, doi: 10.3390/molecules26061505.
  6. Catanzaro, E., Canistro, D., Pellicioni, V., Vivarelli, F., and Fimognari, C. (2022) Anticancer potential of allicin: A review, Pharmacol. Res., 177, 106118, doi: 10.1016/j.phrs.2022.106118.
  7. Rose, P., Whiteman, M., Moore, P. K., and Zhu, Y. Z. (2005) Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents, Nat. Prod. Rep., 22, 351-368, doi: 10.1039/b417639c.
  8. Shen, C., Xiao, H., and Parkin, K. L. (2002) In vitro stability and chemical reactivity of thiosulfinates, J. Agric. Food Chem., 50, 2644-2651, doi: 10.1021/jf011013e.
  9. Small, L. D., Bailey, J. H., and Cavallito, C. J. (1947) Alkyl Thiolsulfinates, J. Am. Chem. Soc., 69, 1710-1713, doi: 10.1021/ja01199a040.
  10. Stellenboom, N., Hunter, R., Caira, M. R., Bourne, S. A., Cele, K., Qwebani, T., and le Roex, T. (2007) Synthesis and inclusion of S-aryl alkylthiosulfinates as stable allicin mimics, ARKIVOC, 9, 53-63, doi: 10.3998/Ark.5550190.0008.907.
  11. Weisberger, A. S., and Pensky, J. (1957) Tumor-inhibiting effects derived from an active principle of garlic (Allium sativum), Science, 126, 1112-1114, doi: 10.1126/science.126.3283.1112-a.
  12. Merhi, F., Auger, J., Rendu, F., and Bauvois, B. (2008) Allium compounds, dipropyl and dimethyl thiosulfinates as antiproliferative and differentiating agents of human acute myeloid leukemia cell lines, Biologics, 2, 885-895, doi: 10.2147/btt.s3212.
  13. Miron, T., Wilchek, M., Sharp, A., Nakagawa, Y., Naoi, M., Nozawa, Y., and Akao, Y. (2008) Allicin inhibits cell growth and induces apoptosis through the mitochondrial pathway in HL60 and U937 cells, J. Nutr. Biochem., 19, 524-535, doi: 10.1016/j.jnutbio.2007.06.009.
  14. Arditti, F. D., Rabinkov, A., Miron, T., Reisner, Y., Berrebi, A., Wilchek, M., and Mirelman, D. (2005) Apoptotic killing of B-chronic lymphocytic leukemia tumor cells by allicin generated in situ using a rituximab-alliinase conjugate, Mol. Cancer Ther., 4, 325-331, doi: 10.1158/1535-7163.325.4.2.
  15. Patya, M., Zahalka, M. A., Vanichkin, A., Rabinkov, A., Miron, T., Mirelman, D., Wilchek, M., Lander, H. M., and Novogrodsky, A. (2004) Allicin stimulates lymphocytes and elicits an antitumor effect: a possible role of P21ras, Int. Immunol., 16, 275-281, doi: 10.1093/intimm/dxh038.
  16. Padilla-Camberos, E., Zaitseva, G., Padilla, C., and Puebla, A. M. (2010) Antitumoral activity of allicin in murine lymphoma L5178Y, Asian Pac. J. Cancer Prev., 11, 1241-1244.
  17. Roseblade, A., Ung, A., and Bebawy, M. (2017) Synthesis and in vitro biological evaluation of thiosulfinate derivatives for the treatment of human multidrug-resistant breast cancer, Acta Pharmacol. Sin., 38, 1353-1368, doi: 10.1038/aps.2016.170.
  18. Park, K. W., Kim, S. Y., Jeong, I. Y., Byun, M. W., Park, K. H., Yamada, K., and Seo, K. I. (2007) Cytotoxic and antitumor activities of thiosulfinates from Allium tuberosum L, J. Agric. Food Chem., 55, 7957-7961, doi: 10.1021/jf0713051.
  19. Ossama, M., Hathout, R. M., Attia, D. A., and Mortada, N. D. (2019) Enhanced allicin cytotoxicity on HEPG-2 cells using glycyrrhetinic acid surface-decorated gelatin nanoparticles, ACS Omega, 4, 11293-11300, doi: 10.1021/acsomega.9b01580.
  20. Hirsch, K., Danilenko, M., Giat, J., Miron, T., Rabinkov, A., Wilchek, M., Mirelman, D., Levy, J., and Sharoni, Y. (2000) Effect of purified allicin, the major ingredient of freshly crushed garlic, on cancer cell proliferation, Nutr. Cancer, 38, 245-254, doi: 10.1207/S15327914NC382_14.
  21. Bhaumik, I., Pal, K., Debnath, U., Karmakar, P., Jana, K., and Misra, A. K. (2019) Natural product inspired allicin analogs as novel anti-cancer agents, Bioorg. Chem., 86, 259-272, doi: 10.1016/j.bioorg.2019.01.057.
  22. Morozova, E., Abo Qoura, L., Anufrieva, N., Koval, V., Lesnova, E., Kushch, A., Kulikova, V., Revtovich, S., Pokrovsky, V. S., and Demidkina, T. (2022) Daidzein-directed methionine γ-lyase in enzyme prodrug therapy against breast cancer, Biochimie, 201, 177-183, doi: 10.1016/j.biochi.2022.05.007.
  23. Miron, T., Mironchik, M., Mirelman, D., Wilchek, M., and Rabinkov, A. (2003) Inhibition of tumor growth by a novel approach: in situ allicin generation using targeted alliinase delivery, Mol. Cancer Ther., 2, 1295-1301.
  24. Appel, E., Rabinkov, A., Neeman, M., Kohen, F., and Mirelman, D. (2011) Conjugates of daidzeinalliinase as a targeted pro-drug enzyme system against ovarian carcinoma, J. Drug Target, 19, 326-335, doi: 10.3109/1061186X.2010.504265.
  25. Morozova, E., Anufrieva, N., Koval, V., Lesnova, E., Kushch, A., Timofeeva, V., Solovieva, A., Kulikova, V., Revtovich, S., and Demidkina, T. (2021) Conjugates of methionine γ-lyase with polysialic acid: two approaches to antitumor therapy, Int. J. Biol. Macromol., 182, 394-401, doi: 10.1016/j.ijbiomac.2021.03.201.
  26. Tyagi, G., Pradhan, S., Srivastava, T., and Mehrotra, R. (2014) Nucleic acid binding properties of allicin: spectroscopic analysis and estimation of anti-tumor potential, Biochim. Biophys. Acta, 1840, 350-356, doi: 10.1016/j.bbagen.2013.09.007.
  27. Sun, L., and Wang, X. (2003) Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells, World J. Gastroenterol., 9, 1930-1934, doi: 10.3748/wjg.v9.i9.1930.
  28. Lee, J. H., Yang, H. S., Park, K. W., Kim, J. Y., Lee, M. K., Jeong, I. Y., Shim, K. H., Kim, Y. S., Yamada, K., and Seo, K. I. (2009) Mechanisms of thiosulfinates from Allium tuberosum L.-induced apoptosis in HT-29 human colon cancer cells, Toxicol. Lett., 188, 142-147, doi: 10.1016/j.toxlet.2009.03.025.
  29. Abo Qoura, L., Morozova, E., Kulikova, V., Karshieva, S., Sokolova, D., Koval, V., Revtovich, S., Demidkina, T., and Pokrovsky, S. V. (2022) Methionine γ-lyase-daidzein in combination with S-propyl-L-cysteine sulfoxide as a targeted prodrug enzyme system for malignant solid tumor xenografts, Int. J. Mol. Sci., 23, 12048, doi: 10.3390/ijms231912048.
  30. Kim, S. Y., Park, K. W., Kim, J. Y., Shon, M. Y., Yee, S. T., Kim, K. H., Rhim, J. S., Yamada, K., and Seo, K. I. (2008) Induction of apoptosis by thiosulfinates in primary human prostate cancer cells, Int. J. Oncol., 32, 869-875.
  31. Kim, S. Y., Park, K. W., Kim, J. Y., Jeong, I. Y., Byun, M. W., Park, J. E., Yee, S. T., Kim, K. H., Rhim, J. S., Yamada, K., and Seo, K. I. (2008) Thiosulfinates from Allium tuberosum L. induce apoptosis via caspase-dependent and -independent pathways in PC-3 human prostate cancer cells, Bioorg. Med. Chem. Lett., 18, 199-204, doi: 10.1016/j.bmcl.2007.10.099.
  32. Mondal, A., Banerjee, S., Bose, S., Mazumder, S., Haber, R. A., Farzaei, M. H., and Bishayee, A. (2021) Garlic constituents for cancer prevention and therapy: from phytochemistry to novel formulations, Pharm. Res., 175, 105837, doi: 10.1016/j.phrs.2021.105837.
  33. De Greef, D., Barton, E. M., Sandberg, E. N., Croley, C. R., Pumarol, J., Wong, T. L., Das, N., and Bishayee, A. (2021) Anticancer potential of garlic and its bioactive constituents: a systematic and comprehensive review, Semin. Cancer Biol., 73, 219-264, doi: 10.1016/j.semcancer.2020.11.020.
  34. Rauf, A., Abu-Izneid, T., Thiruvengadam, M., Imran, M., Olatunde, A., Shariati, M. A., Bawazeer, S., Naz, S., Shirooie, S., Sanches-Silva, A., Farooq, U., and Kazhybayeva, G. (2022) Garlic (Allium sativum L.): its chemistry, nutritional composition, toxicity, and anticancer properties, Curr. Top. Med. Chem., 22, 957-972, doi: 10.2174/1568026621666211105094939.
  35. Mitra, S., Das, R., Emran, T. B., Labib, R. K., Noor-E-Tabassum, I. F., Sharma, R., Ahmad, I., Nainu, F., Chidambaram, K., Alhumaydhi, F. A., Chandran, D., Capasso, R., and Wilairatana, P. (2022) Diallyl disulfide: a bioactive garlic compound with anticancer potential, Front. Pharmacol., 22, 943967, doi: 10.3389/fphar.2022.943967.
  36. Kaschula, C. H., Hunter, R., and Parker, M. I. (2010) Garlic-derived anticancer agents: structure and biological activity of ajoene, Biofactors, 36, 78-85, doi: 10.1002/biof.76.
  37. Cavallito, C. J., and Bailey, J. H. (1944) Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action, J. Am. Chem. Soc., 66, 1950-1951.
  38. Cavallito, C. J., Buck, J. S., and Suter, C. M. (1944) Allicin, the antibacterial principle of Allium sativum. II. Determination of the chemical structure, J. Am. Chem. Soc., 66, 1952-1954, doi: 10.1021/ja01239a049.
  39. Rabinkov, A., Miron, T., Konstantinovski, L., Wilchek, M., Mirelman, D., and Weiner, L. (1998) The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins, Biochim. Biophys. Acta, 1379, 233-244, doi: 10.1016/s0304-4165(97)00104-9.
  40. Gruhlke, M. C. H., Antelmann, H., Bernhardt, J., Kloubert, V., Rink, L., and Slusarenko, A. J. (2019) The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects, Free Radic. Biol. Med., 131, 144-153, doi: 10.1016/j.freeradbiomed.2018.11.022.
  41. Watanabe, Y., Muroi, R., Tsuchiya, H., Uda, Y., and Hashimoto, K. (2013) Inhibitory effect of methyl methanethiosulfinate on β-glucuronidase activity, Biosci. Biotechnol. Biochem., 77, 2325-2327, doi: 10.1271/bbb.130510.
  42. Takada, H., Hirooka, T., Hiramatsu, Y., and Yamamoto, M. (1982) Effect of beta-glucuronidase inhibitor on azoxymethane-induced colonic carcinogenesis in rats, Cancer Res., 42, 331-334.
  43. Morita, N., Walaszek, Z., Kinjo, T., Nishimaki, T., Hanausek, M., Slaga, T. J., Mori, H., and Yoshimi, N. (2008) Effects of synthetic and natural in vivo inhibitors of β-glucuronidase on azoxymethane-induced colon carcinogenesis in rats, Mol. Med. Rep., 1, 741-746, doi: 10.3892/mmr_00000022.
  44. Luo, R., Fang, D., Hang, H., and Tang, Z. (2016) The mechanism in gastric cancer chemoprevention by allicin, Anticancer Agents Med. Chem., 16, 802-809, doi: 10.2174/1871520616666151111115443.
  45. Rendu, F., Brohard-Bohn, B., Pain, S., Bachelot-Loza, C., and Auger, J. (2001) Thiosulfinates inhibit platelet aggregation and microparticle shedding at a calpain-dependent step, Thromb. Haemost., 86, 1284-1291, doi: 10.1055/s-0037-1616063.
  46. Shapovalov, I., Harper, D., and Greer, P. A. (2022) Calpain as a therapeutic target in cancer, Expert Opin. Ther. Targets, 26, 217-231, doi: 10.1080/14728222.2022.2047178.
  47. Badol, P., David-Dufilho, M., Auger, J., Whiteheart, S. W., and Rendu, F. (2007) Thiosulfinates modulate platelet activation by reaction with surface free sulfhydryls and internal thiol-containing proteins, Platelets, 18, 481-490, doi: 10.1080/09537100701271828.
  48. Block, E., Bechand, B., Gundala, S., Vattekkatte, A., Wang, K., Mousa, S. S., Godugu, K., Yalcin, M., and Mousa, S. A. (2017) Fluorinated analogs of organosulfur compounds from garlic (Allium sativum): synthesis, chemistry and anti-angiogenesis and antithrombotic studies, Molecules, 22, 2081, doi: 10.3390/molecules22122081.
  49. Philpott, G. W., Bower, R. J., Parker, K. L., Shearer, W. T., and Parker, C. W. (1974) Affinity cytotoxicity of tumor cells with antibody-glucose oxidase conjugates, peroxidase, and arsphenamine, Cancer Res., 34, 2159-2164.
  50. Chhabria, S. V., Akbarsha, M. A., Li, A. P., Kharkar, P. S., and Desai, K. B. (2015) In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression, Apoptosis, 20, 1388-1409, doi: 10.1007/s10495-015-1159-4.
  51. Tanaka, H., Esaki, N., and Soda, K. (1977) Properties of L-methionine gamma-lyase from Pseudomonas ovalis, Biochemistry, 16, 100-106, doi: 10.1021/bi00620a016.
  52. Morozova, E. A., Revtovich, S. V., Anufrieva, N. V., Kulikova, V. V., Nikulin, A. D., and Demidkina, T. V. (2014) Alliin is a suicide substrate of Citrobacter freundii methionine γ-lyase: structural bases of inactivation of the enzyme, Acta Crystallogr. D Biol. Crystallogr., 70, 3034-3042, doi: 10.1107/S1399004714020938.
  53. Anufrieva, N. V., Morozova, E. A., Kulikova, V. V., Bazhulina, N. P., Manukhov, I. V., Degtev, D. I., Gnuchikh, E. Yu., Rodionov, A. N., Zavilgelsky, G. B., and Demidkina, T. V. (2015) Sulfoxides, analogues of L-methionine and L-cysteine as pro-drugs against gram-positive and gram-negative bacteria, Acta Naturae, 7, 128-135, doi: 10.32607/20758251-2015-7-4-128-135.
  54. Morozova, E., Kulikova, V., Rodionov, A., Revtovich, S., Anufrieva, N., and Demidkina, T. (2016) Engineered Citrobacter freundii methionine γ-lyase effectively produces antimicrobial thiosulfinates, Biochimie, 128-129, 92-98, doi: 10.1016/j.biochi.2016.07.007.
  55. Kulikova, V. V., Anufrieva, N. V., Revtovich, S. V., Chernov, A. S., Telegin, G. B., Morozova, E. A., and Demidkina, T. V. (2016) Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-L-cysteine sulfoxides to antibacterial thiosulfinates, IUBMB Life, 68, 830-835, doi: 10.1002/iub.1562.
  56. Morozova, E. A., Anufrieva, N. V., Davydov, D. Zh., Komarova, M. V., Dyakov, I. N., Rodionov, A. N., Demidkina, T. V., and Pokrovsky, V. S. (2017) Plasma methionine depletion and pharmacokinetic properties in mice of methionine γ-lyase from Citrobacter freundii, Clostridium tetani and Clostridium sporogenes, Biomed. Pharmacother., 88, 978-984, doi: 10.1016/j.biopha.2017.01.127.
  57. Morozova, E. A., Kulikova, V. V., Anufrieva, N. V., Minakov, A. N., Chernov, A. S., Telegin, G. B., Revtovich, S. V., Koval, V. S., and Demidkina, T. V. (2019) Methionine γ-lyase in enzyme prodrug therapy: An improvement of pharmacokinetic parameters of the enzyme, Int. J. Biol. Macromol., 140, 1277-1283, doi: 10.1016/j.ijbiomac.2019.08.224.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах