Thiosulfinates: cytotoxic and antitumor activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The pharmacological value of some natural compounds makes them attractive for use in oncology. Sulfur-containing thiosulfinates found in plants of the genus Allium have long been known as compounds with various therapeutic properties, including antitumor. In recent years, the effect of thiosulfinates on various stages of carcinogenesis has been actively studied. In vitro and in vivo studies have shown that thiosulfinates inhibit the proliferation of cancer cells, as well as induce apoptosis. The purpose of this review is to summarize current data on the use of natural and synthetic thiosulfinates in cancer therapy. Antitumor mechanisms and molecular targets of these promising compounds are discussed. A significant part of the review is devoted to the consideration of a new strategy for the treatment of oncological diseases - the use of the method of directed enzyme prodrug therapy with the possibility of obtaining antitumor thiosulfinates in situ.

About the authors

V. V Kulikova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: vitviku@yandex.ru
119991 Moscow, Russia

E. A Morozova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

V. S Koval

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

P. N Solyev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

T. V Demidkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

S. V Revtovich

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

References

  1. Miekus, N., Marszałek, K., Podlacha, M., Iqbal, A., Puchalski, C., and Swiergiel, A. H. (2020) Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds, Molecules, 25, 3804, doi: 10.3390/molecules25173804.
  2. Lawson, L. D. (1996) The composition and chemistry of garlic cloves and processed garlic, in: Garlic: The Science and Therapeutic Application of Allium sativum L. and Related Species (Koch, H. P., and Lawson, L. D., eds) 2nd Edn., Williams & Wilkins, Baltimore.
  3. Borlinghaus, J., Albrecht, F., Gruhlke, M. C., Nwachukwu, I. D., and Slusarenko, A. J. (2014) Allicin: chemistry and biological properties, Molecules, 19, 12591-12618, doi: 10.3390/molecules190812591.
  4. Batiha, G., Beshbishy, A. M., Wasef, L. G., Elewa, Y. H. A., Al-Sagan, A. A., Abd El-Hack, M. E., Taha, A. E., Abd-Elhakim, Y. M., and Devkota, H. P. (2020) Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review, Nutrients, 12, 872, doi: 10.3390/nu12030872.
  5. Borlinghaus, J., Foerster Née Reiter, J., Kappler, U., Antelmann, H., Noll, U., Gruhlke, M. C. H., and Slusarenko, A. J. (2021) Allicin, the odor of freshly crushed garlic: a review of recent progress in understanding allicin's effects on cells, Molecules, 26, 1505, doi: 10.3390/molecules26061505.
  6. Catanzaro, E., Canistro, D., Pellicioni, V., Vivarelli, F., and Fimognari, C. (2022) Anticancer potential of allicin: A review, Pharmacol. Res., 177, 106118, doi: 10.1016/j.phrs.2022.106118.
  7. Rose, P., Whiteman, M., Moore, P. K., and Zhu, Y. Z. (2005) Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents, Nat. Prod. Rep., 22, 351-368, doi: 10.1039/b417639c.
  8. Shen, C., Xiao, H., and Parkin, K. L. (2002) In vitro stability and chemical reactivity of thiosulfinates, J. Agric. Food Chem., 50, 2644-2651, doi: 10.1021/jf011013e.
  9. Small, L. D., Bailey, J. H., and Cavallito, C. J. (1947) Alkyl Thiolsulfinates, J. Am. Chem. Soc., 69, 1710-1713, doi: 10.1021/ja01199a040.
  10. Stellenboom, N., Hunter, R., Caira, M. R., Bourne, S. A., Cele, K., Qwebani, T., and le Roex, T. (2007) Synthesis and inclusion of S-aryl alkylthiosulfinates as stable allicin mimics, ARKIVOC, 9, 53-63, doi: 10.3998/Ark.5550190.0008.907.
  11. Weisberger, A. S., and Pensky, J. (1957) Tumor-inhibiting effects derived from an active principle of garlic (Allium sativum), Science, 126, 1112-1114, doi: 10.1126/science.126.3283.1112-a.
  12. Merhi, F., Auger, J., Rendu, F., and Bauvois, B. (2008) Allium compounds, dipropyl and dimethyl thiosulfinates as antiproliferative and differentiating agents of human acute myeloid leukemia cell lines, Biologics, 2, 885-895, doi: 10.2147/btt.s3212.
  13. Miron, T., Wilchek, M., Sharp, A., Nakagawa, Y., Naoi, M., Nozawa, Y., and Akao, Y. (2008) Allicin inhibits cell growth and induces apoptosis through the mitochondrial pathway in HL60 and U937 cells, J. Nutr. Biochem., 19, 524-535, doi: 10.1016/j.jnutbio.2007.06.009.
  14. Arditti, F. D., Rabinkov, A., Miron, T., Reisner, Y., Berrebi, A., Wilchek, M., and Mirelman, D. (2005) Apoptotic killing of B-chronic lymphocytic leukemia tumor cells by allicin generated in situ using a rituximab-alliinase conjugate, Mol. Cancer Ther., 4, 325-331, doi: 10.1158/1535-7163.325.4.2.
  15. Patya, M., Zahalka, M. A., Vanichkin, A., Rabinkov, A., Miron, T., Mirelman, D., Wilchek, M., Lander, H. M., and Novogrodsky, A. (2004) Allicin stimulates lymphocytes and elicits an antitumor effect: a possible role of P21ras, Int. Immunol., 16, 275-281, doi: 10.1093/intimm/dxh038.
  16. Padilla-Camberos, E., Zaitseva, G., Padilla, C., and Puebla, A. M. (2010) Antitumoral activity of allicin in murine lymphoma L5178Y, Asian Pac. J. Cancer Prev., 11, 1241-1244.
  17. Roseblade, A., Ung, A., and Bebawy, M. (2017) Synthesis and in vitro biological evaluation of thiosulfinate derivatives for the treatment of human multidrug-resistant breast cancer, Acta Pharmacol. Sin., 38, 1353-1368, doi: 10.1038/aps.2016.170.
  18. Park, K. W., Kim, S. Y., Jeong, I. Y., Byun, M. W., Park, K. H., Yamada, K., and Seo, K. I. (2007) Cytotoxic and antitumor activities of thiosulfinates from Allium tuberosum L, J. Agric. Food Chem., 55, 7957-7961, doi: 10.1021/jf0713051.
  19. Ossama, M., Hathout, R. M., Attia, D. A., and Mortada, N. D. (2019) Enhanced allicin cytotoxicity on HEPG-2 cells using glycyrrhetinic acid surface-decorated gelatin nanoparticles, ACS Omega, 4, 11293-11300, doi: 10.1021/acsomega.9b01580.
  20. Hirsch, K., Danilenko, M., Giat, J., Miron, T., Rabinkov, A., Wilchek, M., Mirelman, D., Levy, J., and Sharoni, Y. (2000) Effect of purified allicin, the major ingredient of freshly crushed garlic, on cancer cell proliferation, Nutr. Cancer, 38, 245-254, doi: 10.1207/S15327914NC382_14.
  21. Bhaumik, I., Pal, K., Debnath, U., Karmakar, P., Jana, K., and Misra, A. K. (2019) Natural product inspired allicin analogs as novel anti-cancer agents, Bioorg. Chem., 86, 259-272, doi: 10.1016/j.bioorg.2019.01.057.
  22. Morozova, E., Abo Qoura, L., Anufrieva, N., Koval, V., Lesnova, E., Kushch, A., Kulikova, V., Revtovich, S., Pokrovsky, V. S., and Demidkina, T. (2022) Daidzein-directed methionine γ-lyase in enzyme prodrug therapy against breast cancer, Biochimie, 201, 177-183, doi: 10.1016/j.biochi.2022.05.007.
  23. Miron, T., Mironchik, M., Mirelman, D., Wilchek, M., and Rabinkov, A. (2003) Inhibition of tumor growth by a novel approach: in situ allicin generation using targeted alliinase delivery, Mol. Cancer Ther., 2, 1295-1301.
  24. Appel, E., Rabinkov, A., Neeman, M., Kohen, F., and Mirelman, D. (2011) Conjugates of daidzeinalliinase as a targeted pro-drug enzyme system against ovarian carcinoma, J. Drug Target, 19, 326-335, doi: 10.3109/1061186X.2010.504265.
  25. Morozova, E., Anufrieva, N., Koval, V., Lesnova, E., Kushch, A., Timofeeva, V., Solovieva, A., Kulikova, V., Revtovich, S., and Demidkina, T. (2021) Conjugates of methionine γ-lyase with polysialic acid: two approaches to antitumor therapy, Int. J. Biol. Macromol., 182, 394-401, doi: 10.1016/j.ijbiomac.2021.03.201.
  26. Tyagi, G., Pradhan, S., Srivastava, T., and Mehrotra, R. (2014) Nucleic acid binding properties of allicin: spectroscopic analysis and estimation of anti-tumor potential, Biochim. Biophys. Acta, 1840, 350-356, doi: 10.1016/j.bbagen.2013.09.007.
  27. Sun, L., and Wang, X. (2003) Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells, World J. Gastroenterol., 9, 1930-1934, doi: 10.3748/wjg.v9.i9.1930.
  28. Lee, J. H., Yang, H. S., Park, K. W., Kim, J. Y., Lee, M. K., Jeong, I. Y., Shim, K. H., Kim, Y. S., Yamada, K., and Seo, K. I. (2009) Mechanisms of thiosulfinates from Allium tuberosum L.-induced apoptosis in HT-29 human colon cancer cells, Toxicol. Lett., 188, 142-147, doi: 10.1016/j.toxlet.2009.03.025.
  29. Abo Qoura, L., Morozova, E., Kulikova, V., Karshieva, S., Sokolova, D., Koval, V., Revtovich, S., Demidkina, T., and Pokrovsky, S. V. (2022) Methionine γ-lyase-daidzein in combination with S-propyl-L-cysteine sulfoxide as a targeted prodrug enzyme system for malignant solid tumor xenografts, Int. J. Mol. Sci., 23, 12048, doi: 10.3390/ijms231912048.
  30. Kim, S. Y., Park, K. W., Kim, J. Y., Shon, M. Y., Yee, S. T., Kim, K. H., Rhim, J. S., Yamada, K., and Seo, K. I. (2008) Induction of apoptosis by thiosulfinates in primary human prostate cancer cells, Int. J. Oncol., 32, 869-875.
  31. Kim, S. Y., Park, K. W., Kim, J. Y., Jeong, I. Y., Byun, M. W., Park, J. E., Yee, S. T., Kim, K. H., Rhim, J. S., Yamada, K., and Seo, K. I. (2008) Thiosulfinates from Allium tuberosum L. induce apoptosis via caspase-dependent and -independent pathways in PC-3 human prostate cancer cells, Bioorg. Med. Chem. Lett., 18, 199-204, doi: 10.1016/j.bmcl.2007.10.099.
  32. Mondal, A., Banerjee, S., Bose, S., Mazumder, S., Haber, R. A., Farzaei, M. H., and Bishayee, A. (2021) Garlic constituents for cancer prevention and therapy: from phytochemistry to novel formulations, Pharm. Res., 175, 105837, doi: 10.1016/j.phrs.2021.105837.
  33. De Greef, D., Barton, E. M., Sandberg, E. N., Croley, C. R., Pumarol, J., Wong, T. L., Das, N., and Bishayee, A. (2021) Anticancer potential of garlic and its bioactive constituents: a systematic and comprehensive review, Semin. Cancer Biol., 73, 219-264, doi: 10.1016/j.semcancer.2020.11.020.
  34. Rauf, A., Abu-Izneid, T., Thiruvengadam, M., Imran, M., Olatunde, A., Shariati, M. A., Bawazeer, S., Naz, S., Shirooie, S., Sanches-Silva, A., Farooq, U., and Kazhybayeva, G. (2022) Garlic (Allium sativum L.): its chemistry, nutritional composition, toxicity, and anticancer properties, Curr. Top. Med. Chem., 22, 957-972, doi: 10.2174/1568026621666211105094939.
  35. Mitra, S., Das, R., Emran, T. B., Labib, R. K., Noor-E-Tabassum, I. F., Sharma, R., Ahmad, I., Nainu, F., Chidambaram, K., Alhumaydhi, F. A., Chandran, D., Capasso, R., and Wilairatana, P. (2022) Diallyl disulfide: a bioactive garlic compound with anticancer potential, Front. Pharmacol., 22, 943967, doi: 10.3389/fphar.2022.943967.
  36. Kaschula, C. H., Hunter, R., and Parker, M. I. (2010) Garlic-derived anticancer agents: structure and biological activity of ajoene, Biofactors, 36, 78-85, doi: 10.1002/biof.76.
  37. Cavallito, C. J., and Bailey, J. H. (1944) Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action, J. Am. Chem. Soc., 66, 1950-1951.
  38. Cavallito, C. J., Buck, J. S., and Suter, C. M. (1944) Allicin, the antibacterial principle of Allium sativum. II. Determination of the chemical structure, J. Am. Chem. Soc., 66, 1952-1954, doi: 10.1021/ja01239a049.
  39. Rabinkov, A., Miron, T., Konstantinovski, L., Wilchek, M., Mirelman, D., and Weiner, L. (1998) The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins, Biochim. Biophys. Acta, 1379, 233-244, doi: 10.1016/s0304-4165(97)00104-9.
  40. Gruhlke, M. C. H., Antelmann, H., Bernhardt, J., Kloubert, V., Rink, L., and Slusarenko, A. J. (2019) The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects, Free Radic. Biol. Med., 131, 144-153, doi: 10.1016/j.freeradbiomed.2018.11.022.
  41. Watanabe, Y., Muroi, R., Tsuchiya, H., Uda, Y., and Hashimoto, K. (2013) Inhibitory effect of methyl methanethiosulfinate on β-glucuronidase activity, Biosci. Biotechnol. Biochem., 77, 2325-2327, doi: 10.1271/bbb.130510.
  42. Takada, H., Hirooka, T., Hiramatsu, Y., and Yamamoto, M. (1982) Effect of beta-glucuronidase inhibitor on azoxymethane-induced colonic carcinogenesis in rats, Cancer Res., 42, 331-334.
  43. Morita, N., Walaszek, Z., Kinjo, T., Nishimaki, T., Hanausek, M., Slaga, T. J., Mori, H., and Yoshimi, N. (2008) Effects of synthetic and natural in vivo inhibitors of β-glucuronidase on azoxymethane-induced colon carcinogenesis in rats, Mol. Med. Rep., 1, 741-746, doi: 10.3892/mmr_00000022.
  44. Luo, R., Fang, D., Hang, H., and Tang, Z. (2016) The mechanism in gastric cancer chemoprevention by allicin, Anticancer Agents Med. Chem., 16, 802-809, doi: 10.2174/1871520616666151111115443.
  45. Rendu, F., Brohard-Bohn, B., Pain, S., Bachelot-Loza, C., and Auger, J. (2001) Thiosulfinates inhibit platelet aggregation and microparticle shedding at a calpain-dependent step, Thromb. Haemost., 86, 1284-1291, doi: 10.1055/s-0037-1616063.
  46. Shapovalov, I., Harper, D., and Greer, P. A. (2022) Calpain as a therapeutic target in cancer, Expert Opin. Ther. Targets, 26, 217-231, doi: 10.1080/14728222.2022.2047178.
  47. Badol, P., David-Dufilho, M., Auger, J., Whiteheart, S. W., and Rendu, F. (2007) Thiosulfinates modulate platelet activation by reaction with surface free sulfhydryls and internal thiol-containing proteins, Platelets, 18, 481-490, doi: 10.1080/09537100701271828.
  48. Block, E., Bechand, B., Gundala, S., Vattekkatte, A., Wang, K., Mousa, S. S., Godugu, K., Yalcin, M., and Mousa, S. A. (2017) Fluorinated analogs of organosulfur compounds from garlic (Allium sativum): synthesis, chemistry and anti-angiogenesis and antithrombotic studies, Molecules, 22, 2081, doi: 10.3390/molecules22122081.
  49. Philpott, G. W., Bower, R. J., Parker, K. L., Shearer, W. T., and Parker, C. W. (1974) Affinity cytotoxicity of tumor cells with antibody-glucose oxidase conjugates, peroxidase, and arsphenamine, Cancer Res., 34, 2159-2164.
  50. Chhabria, S. V., Akbarsha, M. A., Li, A. P., Kharkar, P. S., and Desai, K. B. (2015) In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression, Apoptosis, 20, 1388-1409, doi: 10.1007/s10495-015-1159-4.
  51. Tanaka, H., Esaki, N., and Soda, K. (1977) Properties of L-methionine gamma-lyase from Pseudomonas ovalis, Biochemistry, 16, 100-106, doi: 10.1021/bi00620a016.
  52. Morozova, E. A., Revtovich, S. V., Anufrieva, N. V., Kulikova, V. V., Nikulin, A. D., and Demidkina, T. V. (2014) Alliin is a suicide substrate of Citrobacter freundii methionine γ-lyase: structural bases of inactivation of the enzyme, Acta Crystallogr. D Biol. Crystallogr., 70, 3034-3042, doi: 10.1107/S1399004714020938.
  53. Anufrieva, N. V., Morozova, E. A., Kulikova, V. V., Bazhulina, N. P., Manukhov, I. V., Degtev, D. I., Gnuchikh, E. Yu., Rodionov, A. N., Zavilgelsky, G. B., and Demidkina, T. V. (2015) Sulfoxides, analogues of L-methionine and L-cysteine as pro-drugs against gram-positive and gram-negative bacteria, Acta Naturae, 7, 128-135, doi: 10.32607/20758251-2015-7-4-128-135.
  54. Morozova, E., Kulikova, V., Rodionov, A., Revtovich, S., Anufrieva, N., and Demidkina, T. (2016) Engineered Citrobacter freundii methionine γ-lyase effectively produces antimicrobial thiosulfinates, Biochimie, 128-129, 92-98, doi: 10.1016/j.biochi.2016.07.007.
  55. Kulikova, V. V., Anufrieva, N. V., Revtovich, S. V., Chernov, A. S., Telegin, G. B., Morozova, E. A., and Demidkina, T. V. (2016) Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-L-cysteine sulfoxides to antibacterial thiosulfinates, IUBMB Life, 68, 830-835, doi: 10.1002/iub.1562.
  56. Morozova, E. A., Anufrieva, N. V., Davydov, D. Zh., Komarova, M. V., Dyakov, I. N., Rodionov, A. N., Demidkina, T. V., and Pokrovsky, V. S. (2017) Plasma methionine depletion and pharmacokinetic properties in mice of methionine γ-lyase from Citrobacter freundii, Clostridium tetani and Clostridium sporogenes, Biomed. Pharmacother., 88, 978-984, doi: 10.1016/j.biopha.2017.01.127.
  57. Morozova, E. A., Kulikova, V. V., Anufrieva, N. V., Minakov, A. N., Chernov, A. S., Telegin, G. B., Revtovich, S. V., Koval, V. S., and Demidkina, T. V. (2019) Methionine γ-lyase in enzyme prodrug therapy: An improvement of pharmacokinetic parameters of the enzyme, Int. J. Biol. Macromol., 140, 1277-1283, doi: 10.1016/j.ijbiomac.2019.08.224.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies