В ПОИСКАХ НОВЫХ ДИАГНОСТИЧЕСКИХ БИОМАРКЁРОВ ПСИХОНЕВРОЛОГИЧЕСКИХ И НЕЙРОДЕГЕНЕРАТИВНЫХ ЗАБОЛЕВАНИЙ: ТРАНСЛЯЦИОННЫЕ ФАКТОРЫ DENR И eIF2D
- Авторы: Замятнина К.А.1,2
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского
- Московский государственный университет имени М.В. Ломоносова
- Выпуск: Том 90, № 11 (2025)
- Страницы: 1887-1896
- Раздел: Дискуссия
- URL: https://journals.rcsi.science/0320-9725/article/view/362460
- DOI: https://doi.org/10.7868/S3034529425110222
- ID: 362460
Цитировать
Аннотация
Рост распространённости заболеваний психоневрологического и нейродегенеративного характера подчёркивает важность оперативного терапевтического вмешательства. Для обеспечения эффективности терапии и её своевременного начала необходима ранняя и высокочувствительная диагностика. Расширение спектра доступных биомаркёров, характеризующих особенности заболеваний и их течение, является перспективным направлением современной диагностики. Исследования, направленные на поиск новых биомаркёров, требуют понимания молекулярных механизмов, лежащих в основе развития и патогенеза заболеваний. Множество расстройств психоневрологического и нейродегенеративного характера связаны с нарушениями процесса трансляции. В данной работе обобщены современные представления о механизмах действия факторов DENR и eIF2D и оценён их потенциал как диагностических биомаркёров психоневрологических и нейродегенеративных заболеваний.
Ключевые слова
Об авторах
К. А. Замятнина
Московский государственный университет имени М.В. Ломоносова, НИИ физико-химической биологии имени А.Н. Белозерского; Московский государственный университет имени М.В. Ломоносова
Автор, ответственный за переписку.
Email: zamksju@rambler.ru
Россия, 119234 Москва
Список литературы
- Myrou, A., Barmpagiannos, K., Ioakimidou, A., and Savopoulos, C. (2025) Molecular biomarkers in neurological diseases: advances in diagnosis and prognosis, Int. J. Mol. Sci., 26, 2231, https://doi.org/10.3390/ijms26052231.
- Frye, R. E. (2022) A personalized multidisciplinary approach to evaluating and treating autism spectrum disorder, J. Pers. Med., 12, 464, https://doi.org/10.3390/jpm12030464.
- Jia, X., He, X., Huang, C., Li, J., Dong, Z., and Liu, K. (2024) Protein translation: biological processes and therapeutic strategies for human diseases, Sig. Transduct. Target. Ther., 9, 44, https://doi.org/10.1038/s41392-024-01749-9.
- Scheper, G. C., van der Knaap, M. S., and Proud, C. G. (2007) Translation matters: protein synthesis defects in inherited disease, Nat. Rev. Genet., 8, 711-723, https://doi.org/10.1038/nrg2142.
- Li, W., Wang, X., van der Knaap, M. S., and Proud, C. G. (2004) Mutations linked to leukoencephalopathy with vanishing white matter impair the function of the eukaryotic initiation factor 2B complex in diverse ways, Mol. Cell. Biol., 24, 3295-3306, https://doi.org/10.1128/MCB.24.8.3295-3306.2004.
- Satterfield, T. F., and Pallanck, L. J. (2006) Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes, Hum. Mol. Genet., 15, 2523-2532, https://doi.org/10.1093/hmg/ddl173.
- Eshraghi, M., Karunadharma, P. P., Blin, J., Shahani, N., Ricci, E. P., Michel, A., Urban, N. T., Galli, N., Sharma, M., Ramírez-Jarquín, U. N., Florescu, K., Hernandez, J., and Subramaniam, S. (2021) Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease, Nat. Commun., 12, 1461, https://doi.org/10.1038/s41467-021-21637-y.
- Fujioka, S., Sundal, C., Strongosky, A. J., Castanedes, M. C., Rademakers, R., Ross, O. A., Vilariño-Güell, C., Farrer, M. J., Wszolek, Z. K., and Dickson, D. W. (2013) Sequence variants in eukaryotic translation initiation factor 4-gamma (eIF4G1) are associated with Lewy body dementia, Acta Neuropathol., 125, 425-438, https://doi.org/10.1007/s00401-012-1059-4.
- Zheng, W., Wang, K., Wu, Y., Yan, G., Zhang, C., Li, Z., Wang, L., and Chen, S. (2022) C9orf72 regulates the unfolded protein response and stress granule formation by interacting with eIF2α, Theranostics, 12, 7289-7306, https://doi.org/10.7150/thno.76138.
- Schleich, S., Strassburger, K., Janiesch, P. C., Koledachkina, T., Miller, K. K., Haneke, K., Cheng, Y.-S., Küchler, K., Stoecklin, G., Duncan, K. E., and Teleman, A. A. (2014) DENR-MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth, Nature, 512, 208-212, https://doi.org/10.1038/nature13401.
- Schleich, S., Acevedo, J. M., Clemm von Hohenberg, K., and Teleman, A. A. (2017) Identification of transcripts with short stuORFs as targets for DENR•MCTS1-dependent translation in human cells, Sci. Rep., 7, 3722, https://doi.org/10.1038/s41598-017-03949-6.
- Chen, Y., Liu, S., Ren, Z., Wang, F., Liang, Q., Jiang, Y., Dai, R., Duan, F., Han, C., Ning, Z., Xia, Y., Li, M., Yuan, K., Qiu, W., Yan, X. X., Dai, J., Kopp, R. F., Huang, J., Xu, S., Tang, B., Wu, L., Gamazon, E. R., Bigdeli, T., Gershon, E., Huang, H., Ma, C., Liu, C., and Chen, C. (2024) Cross-ancestry analysis of brain QTLs enhances interpretation of schizophrenia genome-wide association studies, Am. J. Hum. Genet., 111, 2444-2457, https://doi.org/10.1016/j.ajhg.2024.09.001.
- Neale, B. M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K. E., Sabo, A., Lin, C.-F., Stevens, C., Wang, L.-S., Makarov, V., Polak, P., Yoon, S., Maguire, J., Crawford, E. L., Campbell, N. G., Geller, E. T., Valladares, O., Schafer, C., Liu, H., Zhao, T., Cai, G., Lihm, J., Dannenfelser, R., Jabado, O., Peralta, Z., Nagaswamy, U., Muzny, D., Reid, J. G., Newsham, I., Wu, Y., Lewis, L., Han, Y., Voight, B. F., Lim, E., Rossin, E., Kirby, A., Flannick, J., Fromer, M., Shakir, K., Fennell, T., Garimella, K., Banks, E., Poplin, R., Gabriel, S., DePristo, M., Wimbish, J. R., Boone, B. E., Levy, S. E., Betancur, C., Sunyaev, S., Boerwinkle, E., Buxbaum, J. D., Cook, E. H., Jr., Devlin, B., Gibbs, R. A., Roeder, K., Schellenberg, G. D., Sutcliffe, J. S., and Daly, M. J. (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders, Nature, 485, 242-245, https://doi.org/10.1038/nature11011.
- Kurki, M. I., Saarentaus, E., Pietiläinen, O., Gormley, P., Lal, D., Kerminen, S., Torniainen-Holm, M., Hämäläinen, E., Rahikkala, E., Keski-Filppula, R., Rauhala, M., Korpi-Heikkilä, S., Komulainen-Ebrahim, J., Helander, H., Vieira, P., Männikkö, M., Peltonen, M., Havulinna, A. S., Salomaa, V., Pirinen, M., Suvisaari, J., Moilanen, J. S., Körkkö, J., Kuismin, O., Daly, M. J., and Palotie, A. (2019) Contribution of rare and common variants to intellectual disability in a sub-isolate of Northern Finland, Nat. Commun., 10, 410, https://doi.org/10.1038/s41467-018-08262-y.
- Christodoulou, C. C., Onisiforou, A., Zanos, P., and Papanicolaou, E. Z. (2023) Unraveling the transcriptomic signatures of Parkinson’s disease and major depression using single-cell and bulk data, Front. Aging Neurosci., 15, 1273855, https://doi.org/10.3389/fnagi.2023.1273855.
- Wu, J., Wu, W., Jiang, P., Xu, Y., and Yu, M. (2024) Identification of SV2C and DENR as key biomarkers for Parkinson’s disease based on bioinformatics, machine learning, and experimental verification, J. Mol. Neurosci., 74, 6, https://doi.org/10.1007/s12031-023-02182-3.
- Mackiewicz, M., Shockley, K. R., Romer, M. A., Galante, R. J., Zimmerman, J. E., Naidoo, N., Baldwin, D. A., Jensen, S. T., Churchill, G. A., and Pack, A. I. (2007) Macromolecule biosynthesis: a key function of sleep, Physiol. Genomics, 31, 441-457, https://doi.org/10.1152/physiolgenomics.00275.2006.
- Vecsey, C. G., Peixoto, L., Choi, J. H., Wimmer, M., Jaganath, D., Hernandez, P. J., Blackwell, J., Meda, K., Park A. J., Hannenhalli, S., and Abel, T. (2012) Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus, Physiol. Genomics, 44, 981-991, https://doi.org/10.1152/physiolgenomics.00084.2012.
- Castelo-Szekely, V., De Matos, M., Tusup, M., Pascolo, S., Ule, J., and Gatfield, D. (2019) Charting DENR-dependent translation reinitiation uncovers predictive uORF features and links to circadian timekeeping via Clock, Nucleic Acids Res., 47, 5193-5209, https://doi.org/10.1093/nar/gkz261.
- Haas, M. A., Ngo, L., Li, S. S., Schleich, S., Qu, Z., Vanyai, H. K., Cullen, H. D., Cardona-Alberich, A., Gladwyn-Ng, I. E., Pagnamenta, A. T., Taylor, J. C., Stewart, H., Kini, U., Duncan, K. E., Teleman, A. A., Keays, D. A., and Heng, J. I. (2016) De novo mutations in DENR disrupt neuronal development and link congenital neurological disorders to faulty mRNA translation re-initiation, Cell Rep., 15, 2251-2265, https://doi.org/10.1016/j.celrep.2016.04.090.
- Sonobe, Y., Aburas, J., Krishnan, G., Fleming, A. C., Ghadge, G., Islam, P., Warren, E. C., Gu, Y., Kankel, M. W., Brown, A. E. X., Kiskinis, E., Gendron, T. F., Gao, F. B., Roos, R. P., and Kratsios, P. (2021) A C. elegans model of C9orf72-associated ALS/FTD uncovers a conserved role for eIF2D in RAN translation, Nat. Commun., 12, 6025, https://doi.org/10.1038/s41467-021-26303-x.
- Green, K. M., Miller, S. L., Malik, I., and Todd, P. K. (2022) Non-canonical initiation factors modulate repeat-associated non-AUG translation, Hum. Mol. Genet., 31, 2521-2534, https://doi.org/10.1093/hmg/ddac021.
- Gilabert-Juan, J., López-Campos, G., Sebastiá-Ortega, N., Guara-Ciurana, S., Ruso-Julve, F., Prieto, C., Crespo-Facorro, B., Sanjuán, J., and Moltó, M. D. (2019) Time dependent expression of the blood biomarkers EIF2D and TOX in patients with schizophrenia, Brain Behav. Immun., 80, 909-915, https://doi.org/10.1016/j.bbi.2019.05.015.
- Ito, H., Machida, K., Hasumi, M., Ueyama, M., Nagai, Y., Imataka, H., and Taguchi, H. (2023) Reconstitution of C9orf72 GGGGCC repeat-associated non-AUG translation with purified human translation factors, Sci. Rep., 13, 22826, https://doi.org/10.1038/s41598-023-50188-z.
- Lomakin, I. B., Dmitriev, S. E., and Steitz, T. A. (2019) Crystal structure of the DENR-MCT-1 complex revealed zinc-binding site essential for heterodimer formation, Proc. Natl. Acad. Sci. USA, 116, 528-533, https://doi.org/10.1073/pnas.1809688116.
- Weisser, M., Schäfer, T., Leibundgut, M., Böhringer, D., Aylett, C. H. S., and Ban, N. (2017) Structural and functional insights into human re-initiation complexes, Mol. Cell, 67, 447-456.e7, https://doi.org/10.1016/j.molcel.2017.06.032.
- Skabkin, M. A., Skabkina, O. V., Dhote, V., Komar, A. A., Hellen, C. U. T., and Pestova, T. V. (2010) Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling, Genes Dev., 24, 1787-1801, https://doi.org/10.1101/gad.1957510.
- Pérez-Arellano, I., Gallego, J., and Cervera, J. (2007) The PUA domain – a structural and functional overview, FEBS J., 274, 4972-4984, https://doi.org/10.1111/j.1742-4658.2007.06031.x.
- Cerrudo, C. S., Ghiringhelli, P. D., and Gomez, D. E. (2014) Protein universe containing a PUA RNA-binding domain, FEBS J., 281, 74-87, https://doi.org/10.1111/febs.12602.
- Lomakin, I. B., Stolboushkina, E. A., Vaidya, A. T., Zhao, C., Garber, M. B., Dmitriev, S. E., and Steitz, T. A. (2017) Crystal structure of the human ribosome in complex with DENR-MCT-1, Cell Rep., 20, 521-528, https://doi.org/10.1016/j.celrep.2017.06.025.
- Rabl, J., Leibundgut, M., Ataide, S. F., Haag, A., and Ban, N. (2011) Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1, Science, 331, 730-736, https://doi.org/10.1126/science.1198308.
- Vaidya, A. T., Lomakin, I. B., Joseph, N. N., Dmitriev, S. E., and Steitz, T. A. (2017) Crystal structure of the C-terminal domain of human eIF2D and its implications on eukaryotic translation initiation, J. Mol. Biol., 429, 2765-2771, https://doi.org/10.1016/j.jmb.2017.07.015.
- Ahmed, Y. L., Schleich, S., Bohlen, J., Mandel, N., Simon, B., Sinning, I., and Teleman, A. A. (2018) DENR-MCTS1 heterodimerization and tRNA recruitment are required for translation reinitiation, PLoS Biol., 16, e2005160, https://doi.org/10.1371/journal.pbio.2005160.
- Young, D. J., Makeeva, D. S., Zhang, F., Anisimova, A. S., Stolboushkina, E. A., Ghobakhlou, F., Shatsky, I. N., Dmitriev, S. E., Hinnebusch, A. G., and Guydosh, N. R. (2018) Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR recycle post-termination 40S subunits in vivo, Mol. Cell, 71, 761-774.e5, https://doi.org/10.1016/j.molcel.2018.07.028.
- Young, D. J., Meydan, S., and Guydosh, N. R. (2021) 40S ribosome profiling reveals distinct roles for Tma20/Tma22 (MCT-1/DENR) and Tma64 (eIF2D) in 40S subunit recycling, Nat. Commun., 12, 2976, https://doi.org/10.1038/s41467-021-23223-8.
- Dmitriev, S. E., Terenin, I. M., Andreev, D. E., Ivanov, P. A., Dunaevsky, J. E., Merrick, W. C., and Shatsky, I. N. (2010) GTP-independent tRNA delivery to the ribosomal P-site by a novel eukaryotic translation factor, J. Biol. Chem., 285, 26779-26787, https://doi.org/10.1074/jbc.M110.119693.
- Wang, D., Wang, L., Ren, C., Zhang, P., Wang, M., and Zhang, S. (2019) High expression of density-regulated re-initiation and release factor drives tumourigenesis and affects clinical outcome, Oncol. Lett., 17, 141-148, https://doi.org/10.3892/ol.2018.9620.
- Shyrokova, E. Y., Prassolov, V. S., and Spirin, P. V. (2021) The role of the MCTS1 and DENR proteins in regulating the mechanisms associated with malignant cell transformation, Acta Naturae, 13, 98-105, https://doi.org/10.32607/actanaturae.11181.
- Dang, C., Gottschling, M., Manning, K., O’Currain, E., Schneider, S., Sterry, W., and Nindl, I. (2006) Identification of dysregulated genes in cutaneous squamous cell carcinoma, Oncol. Rep., 16, 513-519, https://doi.org/10.3892/or.16.3.513.
- Sossin, W. S., and Costa-Mattioli, M. (2019) Translational control in the brain in health and disease, Cold Spring Harb. Perspect. Biol., 11, a032912, https://doi.org/10.1101/cshperspect.a032912.
- Liu, X., Li, Z., Fan, C., Zhang, D., and Chen, J. (2017) Genetics implicate common mechanisms in autism and schizophrenia: synaptic activity and immunity, J. Med. Genet., 54, 511-520, https://doi.org/10.1136/jmedgenet-2016-104487.
- Bishir, M., Bhat, A., Essa, M. M., Ekpo, O., Ihunwo, A. O., Veeraraghavan, V. P., Mohan, S. K., Mahalakshmi, A. M., Ray, B., Tuladhar, S., Chang, S., Chidambaram, S. B., Sakharkar, M. K., Guillemin, G. J., Qoronfleh, M. W., and Ojcius, D. M. (2020) Sleep deprivation and neurological disorders, Biomed. Res. Int., 2020, 5764017, https://doi.org/10.1155/2020/5764017.
- Schuch, J. B., Genro, J. P., Bastos, C. R., Ghisleni, G., and Tovo-Rodrigues, L. (2018) The role of CLOCK gene in psychiatric disorders: Evidence from human and animal research, Am. J. Med. Genet. B Neuropsychiatr. Genet., 177, 181-198, https://doi.org/10.1002/ajmg.b.32599.
- Chowdhury, D., Wang, C., Lu, A.-P., and Zhu, H.-L. (2019) Understanding quantitative circadian regulations are crucial towards advancing chronotherapy, Cells, 8, 883, https://doi.org/10.3390/cells8080883.
- Hannan, A. J. (2018) Tandem repeats mediating genetic plasticity in health and disease, Nat. Rev. Genet., 19, 286-298, https://doi.org/10.1038/nrg.2017.115.
- Malik, I., Kelley, C. P., Wang, E. T., and Todd, P. K. (2021) Molecular mechanisms underlying nucleotide repeat expansion disorders, Nat. Rev. Mol. Cell Biol., 22, 589-607, https://doi.org/10.1038/s41580-021-00382-6.
- Miller, J. W., Urbinati, C. R., Teng-Umnuay, P., Stenberg, M. G., Byrne, B. J., Thornton, C. A., and Swanson, M. S. (2000) Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy, EMBO J., 19, 4439-4448, https://doi.org/10.1093/emboj/19.17.4439.
- Liquori, C. L., Ricker, K., Moseley, M. L., Jacobsen, J. F., Kress, W., Naylor, S. L., Day, J. W., and Ranum, L. P. (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9, Science, 293, 864-867, https://doi.org/10.1126/science.1062125.
- Banez-Coronel, M., and Ranum, L. P. W. (2019) Repeat-associated non-AUG (RAN) translation: insights from pathology, Lab. Invest., 99, 929-942, https://doi.org/10.1038/s41374-019-0241-x.
- Nguyen, L., Cleary, J. D., and Ranum, L. P. W. (2019) Repeat-associated non-ATG translation: molecular mechanisms and contribution to neurological disease, Annu. Rev. Neurosci., 42, 227-247, https://doi.org/10.1146/annurev-neuro-070918-050405.
- Bañez-Coronel, M., Ayhan, F., Tarabochia, A. D., Zu, T., Perez, B. A., Tusi, S. K., Pletnikova, O., Borchelt, D. R., Ross, C. A., Margolis, R. L., Yachnis, A. T., Troncoso, J. C., and Ranum, L. P. (2015) RAN translation in Huntington disease, Neuron, 88, 667-677, https://doi.org/10.1016/j.neuron.2015.10.038.
- DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., Nicholson, A. M., Finch, N. A., Flynn, H., Adamson, J., Kouri, N., Wojtas, A., Sengdy, P., Hsiung, G. Y., Karydas, A., Seeley, W. W., Josephs, K. A., Coppola, G., Geschwind, D. H., Wszolek, Z. K., Feldman, H., Knopman, D. S., Petersen, R. C., Miller, B. L., Dickson, D. W., Boylan, K. B., Graff-Radford, N. R., and Rademakers, R. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS, Neuron, 72, 245-256, https://doi.org/10.1016/j.neuron.2011.09.011.
- Renton, A. E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J. R., Schymick, J. C., Laaksovirta, H., van Swieten, J. C., Myllykangas, L., Kalimo, H., Paetau, A., Abramzon, Y., Remes, A. M., Kaganovich, A., Scholz, S. W., Duckworth, J., Ding, J., Harmer, D. W., Hernandez, D. G., Johnson, J. O., Mok, K., Ryten, M., Trabzuni, D., Guerreiro, R. J., Orrell, R. W., Neal, J., Murray, A., Pearson, J., Jansen, I. E., Sondervan, D., Seelaar, H., Blake, D., Young, K., Halliwell, N., Callister, J. B., Toulson, G., Richardson, A., Gerhard, A., Snowden, J., Mann, D., Neary, D., Nalls, M. A., Peuralinna, T., Jansson, L., Isoviita, V.-M., Kaivorinne, A.-L., Hölttä-Vuori, M., Ikonen, E., Sulkava, R., Benatar, M., Wuu, J., Chiò, A., Restagno, G., Borghero, G., Sabatelli, M., ITALSGEN Consortium et al. (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD, Neuron, 72, 257-268, https://doi.org/10.1016/j.neuron.2011.09.010.
Дополнительные файлы


