INDUCTION OF TUMOR-ASSOCIATED PHENOTYPE IN NORMAL FIBROBLASTS BY GLIOMA CELL APOPTOTIC BODIES
- Autores: Kovalskaya K.V1, Titov M.M2, Baskaev K.K1, Lupatov A.Y1, Potashnikova D.M3, Susova O.Y4, Kim Y.S1, Yarygin K.N1,5, Kholodenko R.V2, Kholodenko I.V1
-
Afiliações:
- Institute of Biomedical Chemistry
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS
- Lomonosov Moscow State University, Faculty of Biology
- N. N. Blokhin National Medical Research Center of Oncology
- Russian Medical Academy of Postgraduate Education of the Ministry of Healthcare of the Russian Federation
- Edição: Volume 90, Nº 10 (2025)
- Páginas: 1511-1531
- Seção: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/355116
- DOI: https://doi.org/10.31857/S0320972525100088
- ID: 355116
Citar
Resumo
Sobre autores
K. Kovalskaya
Institute of Biomedical ChemistryMoscow, Russia
M. Titov
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RASMoscow, Russia
K. Baskaev
Institute of Biomedical ChemistryMoscow, Russia
A. Lupatov
Institute of Biomedical ChemistryMoscow, Russia
D. Potashnikova
Lomonosov Moscow State University, Faculty of BiologyMoscow, Russia
O. Susova
N. N. Blokhin National Medical Research Center of OncologyMoscow, Russia
Y. Kim
Institute of Biomedical ChemistryMoscow, Russia
K. Yarygin
Institute of Biomedical Chemistry; Russian Medical Academy of Postgraduate Education of the Ministry of Healthcare of the Russian FederationMoscow, Russia; Moscow, Russia
R. Kholodenko
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RASMoscow, Russia
I. Kholodenko
Institute of Biomedical Chemistry
Email: irkhol@yandex.ru
Moscow, Russia
Bibliografia
- Krex, D., Klink, B., Hartmann, C., von Deimling, A., Pietsch, T., Simon, M., Sabel, M., Steinbach, J. P., Heese, O., Reifenberger, G., Weller, M., and Schackert, G. (2007) German Glioma Network. Long-term survival with glioblastoma multiforme, Brain, 130, 2596-2606, https://doi.org/10.1093/brain/awn204.
- Sharma, P., Aaroe, A., Liang, J., and Puduvalli, V. K. (2023) Tumor microenvironment in glioblastoma: current and emerging concepts, Neurooncol. Adv., 5, vdad009, https://doi.org/10.1093/noajnl/vdad009.
- Kalluri, R. (2016) The biology and function of fibroblasts in cancer, Nat. Rev. Cancer, 16, 582-598, https://doi.org/10.1038/nrc.2016.73.
- Naito, Y. (2025) How do cancer cells create cancer-associated fibroblast subtypes? Impacts of extracellular vesicles on stromal diversity, Cancer Sci., 116, 2347-2361, https://doi.org/10.1111/cas.70133.
- Yang, D., Liu, J., Qian, H., and Zhuang, Q. (2023) Cancer-associated fibroblasts: from basic science to anticancer therapy, Exp. Mol. Med., 55, 1322-1332, https://doi.org/10.1038/s12276-023-01013-0.
- Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., Becker, A., Hoshino, A., Mark, M. T., Molina, H., Xiang, J., Zhang, T., Theilen, T. M., García-Santos, G., Williams, C., Ararso, Y., Huang, Y., Rodrigues, G., Shen, T. L., Labori, K. J., Lothe, I. M., Kure, E. H., Hernandez, J., Doussot, A., Ebbesen, S. H., Grandgenett, P. M., Hollingsworth, M. A., Jain, M., Mallya, K., Batra, S. K., Jarnagin, W. R., Schwartz, R. E., Matei, I., Peinado, H., Stanger, B. Z., Bromberg, J., and Lyden, D. (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver, Nat. Cell Biol., 17, 816-826, https://doi.org/10.1038/ncb3169.
- Naito, Y., Yoshioka, Y., and Ochiya, T. (2022) Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via extracellular vesicles, Cancer Cell Int., 22, 367, https://doi.org/10.1186/s12935-022-02784-8.
- Холоденко И.В., Лупатов А.Ю., Ким Я.С., Сарыглар Р.Ю., Холоденко Р.В., Ярыгин К.Н. (2024) Мезенхимные свойства клеток глиомных линий, Клеточные технологии в биологии и медицине, 3, 147-156, https://doi.org/10.47056/1814-3490-2024-3-147-156.
- Atkin-Smith, G. K., Paone, S., Zanker, D. J., Duan, M., Phan, T. K., Chen, W., Hulett, M. D., and Poon, I. K. (2017) Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting, Sci. Rep., 7, 39846, https://doi.org/10.1038/srep39846.
- Kholodenko, I. V., Kim, Y. S., Gisina, A. M., Lupatov, A. Y., Kholodenko, R. V., and Yarygin, K. N. (2021) Analysis of the correlation between CD133 expression on human colorectal adenocarcinoma cells HT-29 and their resistance to chemotherapeutic drugs, Bull. Exp. Biol. Med., 171, 156-163, https://doi.org/10.1007/s10517-021-05188-2.
- Kalinovsky, D. V., Kibardin, A. V., Kholodenko, I. V., Svirshchevskaya, E. V., Doronin, I. I., Konovalova, M. V., Grechikhina, M. V., Rozov, F. N., Larin, S. S., Deyev, S. M., and Kholodenko, R. V. (2022) Therapeutic efficacy of antibody-drug conjugates targeting GD2-positive tumors, J. Immunother. Cancer, 10, e004646, https://doi.org/10.1136/jitc-2022-004646.
- Fayzullin, A., Sandberg, C. J., Spreadbury, M., Saberniak, B. M., Grieg, Z., Skaga, E., Langmoen, I. A., and Vik-Mo, E. O. (2019) Phenotypic and expressional heterogeneity in the invasive glioma cells, Transl. Oncol., 12, 122-133, https://doi.org/10.1016/j.tranon.2018.09.014.
- Piao, Y., Lu, L., and de Groot, J. (2009) AMPA receptors promote perivascular glioma invasion via beta1 integrin-dependent adhesion to the extracellular matrix, Neuro Oncol., 11, 260-273, https://doi.org/10.1215/15228517-2008-094.
- Cordes, N., Seidler, J., Durzok, R., Geinitz, H., and Brakebusch, C. (2006) Beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury, Oncogene, 25, 1378-1390, https://doi.org/10.1038/sj.onc.1209164.
- Nwagwu, C. D., Immidisetti, A. V., Bukanowska, G., Vogelbaum, M. A., and Carbonell, A. M. (2020) Convection-enhanced delivery of a first-in-class anti-β1 integrin antibody for the treatment of high-grade glioma utilizing real-time imaging, Pharmaceutics, 13, 40, https://doi.org/10.3390/pharmaceutics13010040.
- Soni, P., Qayoom, S., Husain, N., Kumar, P., Chandra, A., Ojha, B. K., and Gupta, R. K. (2017) CD24 and Nanog expression in stem cells in glioblastoma: correlation with response to chemoradiation and overall survival, Asian Pac. J. Cancer Prev., 18, 2215-2219, https://doi.org/10.22034/APJCP.2017.18.8.2215.
- Balik, V., Mirossay, P., Bohus, P., Sulla, I., Mirossay, L., and Sarissky, M. (2009) Flow cytometry analysis of neural differentiation markers expression in human glioblastomas may predict their response to chemotherapy, Cell Mol. Neurobiol., 29, 845-858, https://doi.org/10.1007/s10571-009-9366-6.
- Etzell, J. E., Keet, C., McDonald, W., and Banerjee, A. (2006) Medulloblastoma simulating acute myeloid leukemia: case report with a review of "myeloid antigen" expression in nonhematopoietic tissues and tumors, J. Pediatr. Hematol. Oncol., 28, 703-710, https://doi.org/10.1097/01.mph.0000243647.66734.0f.
- Arthurs, A. L., Keating, D. J., Stringer, B. W., and Conn, S. J. (2020) The suitability of glioblastoma cell lines as models for primary glioblastoma cell metabolism, Cancers (Basel), 12, 3722, https://doi.org/10.3390/cancers12123722.
- Zeng, Y., Wang, X., Wang, J., Yi, R., Long, H., Zhou, M., Luo, Q., Zhai, Z., Song, Y., and Qi, S. (2018) The tumorgenicity of glioblastoma cell line U87MG decreased during serial in vitro passage, Cell Mol. Neurobiol., 38, 1245-1252, https://doi.org/10.1007/s10571-018-0592-7.
- Lanskikh, D., Kuziakova, O., Baklanov, I., Penkova, A., Doroshenko, V., Buriak, I., Zhmenia, V., and Kumeiko, V. (2024) Cell-based glioma models for anticancer drug screening: from conventional adherent cell cultures to tumor-specific three-dimensional constructs, Cells, 13, 2085, https://doi.org/10.3390/cells13242085.
- Sorokin, M., Kholodenko, I., Kalinovsky, D., Shamanskaya, T., Doronin, I., Konovalova, D., Mironov, A., Kuzmin, D., Nikitin, D., Deyev, S., Buzdin, A., and Kholodenko, R. (2020) RNA sequencing-based identification of ganglioside GD2-positive cancer phenotype, Biomedicines, 8, 142, https://doi.org/10.3390/biomedicines8060142.
- Kholodenko, I. V., Kalinovsky, D. V., Doronin, I. I., Deyev, S. M., and Kholodenko, R. V. (2018) Neuroblastoma origin and therapeutic targets for immunotherapy, J. Immunol. Res., 2018, 7394268, https://doi.org/10.1155/2018/7394268.
- Woo, S. R., Oh, Y. T., An, J. Y., Kang, B. G., Nam, D. H., and Joo, K. M. (2015) Glioblastoma specific antigens, GD2 and CD90, are not involved in cancer stemness, Anat. Cell Biol., 48, 44-53, https://doi.org/10.5115/acb.2015.48.1.44.
- Chiavelli, C., Prapa, M., Rovesti, G., Silingardi, M., Neri, G., Pugliese, G., Trudu, L., Dall’Ora, M., Golinelli, G., Grisendi, G., Vinet, J., Bestagno, M., Spano, C., Papapietro, R. V., Depenni, R., Di Emidio, K., Pasetto, A., Nascimento Silva, D., Feletti, A., Berlucchi, S., Iaccarino, C., Pavesi, G., and Dominici, M. (2024) Autologous anti-GD2 CAR T cells efficiently target primary human glioblastoma, NPJ Precis. Oncol., 8, 26, https://doi.org/10.1038/s41698-024-00506-z.
- Kalinovsky, D. V., Kholodenko, I. V., Kibardin, A. V., Doronin, I. I., Svirshchevskaya, E. V., Ryazantsev, D. Y., Konovalova, M. V., Rozov, F. N., Larin, S. S., Deyev, S. M., and Kholodenko, R. V. (2023) Minibody-based and scFv-based antibody fragment-drug conjugates selectively eliminate GD2-positive tumor cells, Int. J. Mol. Sci., 24, 1239, https://doi.org/10.3390/ijms24021239.
- Makarova, A. O., Titov, M. M., Kalinovsky, D. V., Kholodenko, I. V., Kibardin, A. V., Larin, S. S., Svirshchevskaya, E. V., Deyev, S. M., and Kholodenko, R. V. (2025) Endocytosis properties of GD2-specific antibodies in tumor cells, Biochemistry (Moscow), 90, 424-435, https://doi.org/10.1134/S0006297925600395.
- Saito, M., Kitamura, H., and Sugiyama, K. (2001) The specificity of monoclonal antibody A2B5 to c-series gangliosides, J. Neurochem., 78, 64-74, https://doi.org/10.1046/j.1471-4159.2001.00365.x.
- Figarella-Branger, D., Colin, C., Baeza-Kallee, N., and Tchoghandjian, A. (2022) A2B5 expression in central nervous system and gliomas, Int. J. Mol. Sci., 23, 4670, https://doi.org/10.3390/ijms23094670.
- Baeza-Kallee, N., Berges, R., Soubéran, A., Colin, C., Denicolai, E., Appay, R., Tchoghandjian, A., and Figarella-Branger, D. (2019) Glycolipids recognized by A2B5 antibody promote proliferation, migration, and clonogenicity in glioblastoma cells, Cancers (Basel), 11, 1267, https://doi.org/10.3390/cancers11091267.
- Banerjee, H. N., Bartlett, V., Krauss, C., Aurelius, C., Johnston, K., Hedley, J., and Verma, M. (2021) Efferocytosis and the story of "find me," "eat me," and "don't eat me" signaling in the tumor microenvironment, Adv. Exp. Med. Biol., 1329, 153-162, https://doi.org/10.1007/978-3-030-73119-9_8.
- Michalak, M. (2024) Calreticulin: endoplasmic reticulum Ca2+ gatekeeper, J. Cell Mol. Med., 28, e17839, https://doi.org/10.1111/jcmm.17839.
- Osman, R., Taenet-Delorme, P., Kleman, J. P., Millet, A., and Frachet, P. (2017) Calreticulin release at an early stage of death modulates the clearance by macrophages of apoptotic cells, Front. Immunol., 8, 1034, https://doi.org/10.3389/fimmu.2017.01034.
- Fucikova, J., Spisek, R., Kroemer, G., and Galluzzi, L. (2021) Calreticulin and cancer, Cell Res., 31, 5-16, https://doi.org/10.1038/s41422-020-0383-9.
- Zhang, Y., and Zheng, J. (2020) Functions of immune checkpoint molecules beyond immune evasion, Adv. Exp. Med. Biol., 1248, 201-226, https://doi.org/10.1007/978-981-15-3266-5_9.
- He, X., and Xu, C. (2020) Immune checkpoint signaling and cancer immunotherapy, Cell Res., 30, 660-669, https://doi.org/10.1038/s41422-020-0343-4.
- Elward, K., and Gasque, P. (2003) "Eat me" and "don't eat me" signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system, Mol. Immunol., 40, 85-94, https://doi.org/10.1016/s0161-5890(03)00109-3.
- Wang, Z., Zhang, C., Liu, X., Wang, Z., Sun, L., Li, G., Liang, J., Hu, H., Liu, Y., Zhang, W., and Jiang, T. (2016) Molecular and clinical characterization of PD-L1 expression at transcriptional level via 976 samples of brain glioma, Oncoimmunology, 5, e1196310, https://doi.org/10.1080/2162402X.2016.1196310.
- Ma, F., Liu, X., Zhang, Y., Tao, Y., Zhao, L., Abusalaman, H., Huffman, C., Harbison, R. A., Puram, S. V., Wang, Y., and Peng, G. (2025) Tumor extracellular vesicle-derived PD-L1 promotes T cell senescence through lipid metabolism reprogramming, Sci. Transl. Med., 17, eadm7269, https://doi.org/10.1126/scitranslmed.adm7269.
- Yu, Z. L., Liu, J. Y., and Chen, G. (2022) Small extracellular vesicle PD-L1 in cancer: the knowns and unknowns, NPJ Precis. Oncol., 6, 42, https://doi.org/10.1038/s41698-022-00287-3.
- Oldenborg, P. A. (2013) CD47: a cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease, ISRN Hematol., 2013, 614619, https://doi.org/10.1155/2013/614619.
- Afzal, A., Afzal, Z., Bizink, S., Davis, A., Makahleh, S., Mohamed, Y., and Coniglio, S. J. (2024) Phagocytosis checkpoints in glioblastoma: CD47 and beyond, Curr. Issues Mol. Biol., 46, 7795-7811, https://doi.org/10.3390/cimb46080462.
- Blinova, G. A., Yarygin, K. N., and Kholodenko, I. V. (2024) Efferocytosis as one of the mechanisms for realizing the therapeutic effects of mesenchymal stem cells, Biomed. Chem. Res. Methods, 7, e00221, https://doi.org/10.18097/bmcrm00221.
- Yin, C., and Heit, B. (2021) Cellular responses to the efferocytosis of apoptotic cells, Front. Immunol., 12, 631714, https://doi.org/10.3389/fimmu.2021.631714.
- Clavreuil, A., and Menel, P. (2020) Mesenchymal stromal-like cells in the glioma microenvironment: what are these cells? Cancers (Basel), 12, 2628, https://doi.org/10.3390/cancers12092628.
- Kazakova, A. N., Lukina, M. M., Anufrieva, K. S., Bekhaeva, I. V., Ivanova, O. M., Shnaider, P. V., Slonov, A., Arapidi, G. P., and Shender, V. O. (2024) Exploring the diversity of cancer-associated fibroblasts: insights into mechanisms of drug resistance, Front. Cell Dev. Biol., 12, 1403122, https://doi.org/10.3389/fcell.2024.1403122.
- Agorku, D. J., Langhammer, A., Heider, U., Wild, S., Bosio, A., and Hardt, O. (2019) CD49b, CD87, and CD95 are markers for activated cancer-associated fibroblasts whereas CD39 marks quiescent normal fibroblasts in murine tumor models, Front. Oncol., 9, 716, https://doi.org/10.3389/fonc.2019.00716.
- Liu, X., Wang, C., Mao, H., and Wei, J. (2025) Crosstalk between cancer-associated fibroblasts and inflammation in tumor microenvironment: a novel perspective in cancer therapy (review), Oncol. Rep., 54, 93, https://doi.org/10.3892/or.2025.8926.
- Yang, S. X., Chen, J. H., Jiang, X. F., Wang, Q. L., Chen, Z. Q., Zhao, W., Feng, Y. H., Xin, R., Shi, J. Q., Bian, X. W. (2005) Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor, Biochem. Biophys. Res. Commun., 335, 523-528, https://doi.org/10.1016/j.bbrc.2005.07.113.
- Wang, L., Yi, T., Kortylewski, M., Pardoll, D. M., Zeng, D., and Yu, H. (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway, J. Exp. Med., 206, 1457-1464, https://doi.org/10.1084/jem.20090207.
- Nam, J. S., Terabe, M., Kang, M. J., Chae, H., Voong, N., Yang, Y. A., Laurence, A., Michalowska, A., Mamura, M., Lonning, S., Berzofsky, J. A., and Wakefield, L. M. (2008) Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17, Cancer Res., 68, 3915-3923, https://doi.org/10.1158/0008-5472.CAN-08-0206.
- Kast, R. E. (2015) The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir, Chin. J. Cancer, 34, 161-165, https://doi.org/10.1186/s40880-015-0010-1.
- Bellone, G., Smirne, C., Mauri, F. A., Tonel, E., Carbone, A., Buffolino, A., Dughera, L., Robecchi, A., Pirisi, M., and Emanuelli, G. (2006) Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival, Cancer Immunol. Immunother., 55, 684-698, https://doi.org/10.1007/s00262-005-0047-0.
- De Boeck, A., Ahn, B. Y., D'Mello, C., Lun, X., Menon, S. V., Alshehri, M. M., Szulzewsky, F., Shen, Y., Khan, L., Dang, N. H., Reichardt, E., Goring, K. A., King, J., Grisdale, C. J., Grinstein, N., Hambardzumyan, D., Reilly, K. M., Blough, M. D., Cairncross, J. G., Yong, V. W., Marra, M. A., Jones, S. J. M., Kaplan, D. R., McCoy, K. D., Holland, E. C., Bose, P., Chan, J. A., Robbins, S. M., and Senger, D. L. (2020) Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression, Nat. Commun., 11, 4997, https://doi.org/10.1038/s41467-020-18569-4.
- Zhang, J. F., Tao, T., Wang, K., Zhang, G. X., Yan, Y., Lin, H. R., Li, Y., Guan, M. W., Yu, J. J., and Wang, X. D. (2019) IL-33/ST2 axis promotes glioblastoma cell invasion by accumulating tenascin-C, Sci. Rep., 9, 20276, https://doi.org/10.1038/s41598-019-56696-1.
- Han, J., Alvarez-Breckenridge, C. A., Wang, Q. E., and Yu, J. (2015) TGF-β signaling and its targeting for glioma treatment, Am. J. Cancer Res., 5, 945-955.
- Liu, Z. W., Zhang, Y. M., Zhang, L. Y., Zhou, T., Li, Y. Y., Zhou, G. C., Miao, Z. M., Shang, M., He, J. P., Ding, N., and Liu, Y. Q. (2022) Duality of interactions between TGF-β and TNF-α during tumor formation, Front. Immunol., 12, 810286, https://doi.org/10.3389/fimmu.2021.810286.
- Guan, B., Li, H., Yao, J., Guo, J., Yu, F., Li, G., Wan, B., Ma, J., Huang, D., Sun, L., and Chen, Y. (2023) CCL3-CCR5 axis promotes cell migration and invasion of colon adenocarcinoma via Akt signaling pathway, Environ. Toxicol., 38, 172-184, https://doi.org/10.1002/tox.23675.
- Xu, H., Zhao, J., Li, J., Zhu, Z., Cui, Z., Liu, R., Lu, R., Yao, Z., and Xu, Q. (2022) Cancer associated fibroblast-derived CCL5 promotes hepatocellular carcinoma metastasis through activating HIF1α/ZEB1 axis, Cell Death Dis., 13, 478, https://doi.org/10.1038/s41419-022-04935-1.
- Hassan, M. S., Cwidak, N., Awasthi, N., and von Holzen, U. (2022) Cytokine interaction with cancer-associated fibroblasts in esophageal cancer, Cancer Control., 29, 10732748221078470, https://doi.org/10.1177/10732748221078470.
- Payne, L. S., and Huang, P. H. (2013) The pathobiology of collagen in glioma, Mol. Cancer Res., 11, 1129-1140, https://doi.org/10.1158/1541-7786.MCR-13-0236.
- Huijbers, I. J., Iravani, M., Popov, S., Robertson, D., Al-Sarraj, S., Jones, C. M. (2010) A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion, PLoS One, 5, e9808, https://doi.org/10.1371/journal.pone.0009808.
- Dong, H., Luo, L., Hong, S., Siu, H., Xiao, Y., Jin, L., Chen, R., and Xiong, M. (2010) Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma, BMC Syst. Biol., 4, 163, https://doi.org/10.1186/1752-0509-4-163.
- Fadok, V. A., Bratton, D. L., Konowal, A., Freed, P. W., Westcott, J. Y., and Henson, P. M. (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF, J. Clin. Invest., 101, 890-898, https://doi.org/10.1172/JCI1112.
- Zweemer, A. J. M., French, C. B., Mesfin, J., Gordonov, S., Meyer, A. S., and Lauffenburger, D. A. (2017) Apoptotic bodies elicit Gas6-mediated migration of AXL-expressing tumor cells, Mol. Cancer Res., 15, 1656-1666, https://doi.org/10.1158/1541-7786.MCR-17-0012.
- Li, Z., Wu, M., Liu, S., Liu, X., Huan, Y., Ye, Q., Yang, X., Guo, H., Liu, A., Huang, X., Yang, X., Ding, F., Xu, H., Zhou, J., Liu, P., Liu, S., Jin, Y., and Xuan, K. (2022) Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration, Mol. Ther., 30, 3193-3208, https://doi.org/10.1016/j.ymthe.2022.05.006.
- Li, M., Xing, X., Huang, H., Liang, C., Gao, X., Tang, Q., Xu, X., Yang, J., Liao, L., Tian, W. (2022) BMSC-derived ApoEVs promote craniofacial bone repair via ROS/JNK signaling, J. Dent. Res., 101, 714-723, https://doi.org/10.1177/00220345211068338.
- Kiss, R. S., Elliott, M. R., Ma, Z., Marcel, Y. L., and Ravichandran, K. S. (2006) Apoptotic cells induce a homeostatic response from phagocytes, Curr. Biol., 16, 2252-2258, https://doi.org/10.1016/j.cub.2006.09.043.
Arquivos suplementares

