INDUCTION OF TUMOR-ASSOCIATED PHENOTYPE IN NORMAL FIBROBLASTS BY GLIOMA CELL APOPTOTIC BODIES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The key cellular component of solid tumors, including gliomas, are tumor-associated fibroblasts (TAFs), which support the growth of malignant cells, stimulate their invasion and metastasis, induce chemoresistance and suppress the antitumor immune response. TAFs are formed from resident stromal cells under the influence of the tumor cell secretome, including growth factors, chemokines, and extracellular vesicles. Communication between malignant cells and TAFs occurs through direct cell-cell contacts and by mutual exchange of secreted molecules and membrane vesicles. In this work, apoptotic bodies (apoBD) were obtained from two types of glioma cells (T98g cell line and cells isolated from glioblastoma patient biopsy) and characterized by surface markers. The surface of tumor apoBD contains glioblastoma tumor-associated markers such as ganglioside GD2 and antigen A2B5. It was demonstrated that glioma apoBDs have decreased levels of "don't eat me" molecules and increased level of "eat me" signal compared to the original intact glioma cells. On the one hand, glioma apoBDs reduced the viability of normal dermal fibroblasts in a dose-dependent manner, but on the other hand, induced their transformation into the inflammatory subtype of TAFs. The iTAFs obtained in this way demonstrated enhanced transcription of genes encoding cytokines, chemokines and growth factors, including IL17A, IL18, IL33, IFN-γ, CCL3, CCL5, CXCL1, CXCL5, CXCL10, CXCL12, TGFB1, and TNF, responsible for maintaining both tumorigenesis itself and the ability of fibroblasts to maintain it. It was found that glioma apoBDs are able to transfer tumor-associated markers, ganglioside GD2 and antigen A2B5, into normal fibroblasts, and the effects of anti-GD2 ADC on TAFs were investigated. This result may become a prerequisite for the development of targeted drugs that are effective not only against tumor cells but also against tumor stroma.

Sobre autores

K. Kovalskaya

Institute of Biomedical Chemistry

Moscow, Russia

M. Titov

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS

Moscow, Russia

K. Baskaev

Institute of Biomedical Chemistry

Moscow, Russia

A. Lupatov

Institute of Biomedical Chemistry

Moscow, Russia

D. Potashnikova

Lomonosov Moscow State University, Faculty of Biology

Moscow, Russia

O. Susova

N. N. Blokhin National Medical Research Center of Oncology

Moscow, Russia

Y. Kim

Institute of Biomedical Chemistry

Moscow, Russia

K. Yarygin

Institute of Biomedical Chemistry; Russian Medical Academy of Postgraduate Education of the Ministry of Healthcare of the Russian Federation

Moscow, Russia; Moscow, Russia

R. Kholodenko

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS

Moscow, Russia

I. Kholodenko

Institute of Biomedical Chemistry

Email: irkhol@yandex.ru
Moscow, Russia

Bibliografia

  1. Krex, D., Klink, B., Hartmann, C., von Deimling, A., Pietsch, T., Simon, M., Sabel, M., Steinbach, J. P., Heese, O., Reifenberger, G., Weller, M., and Schackert, G. (2007) German Glioma Network. Long-term survival with glioblastoma multiforme, Brain, 130, 2596-2606, https://doi.org/10.1093/brain/awn204.
  2. Sharma, P., Aaroe, A., Liang, J., and Puduvalli, V. K. (2023) Tumor microenvironment in glioblastoma: current and emerging concepts, Neurooncol. Adv., 5, vdad009, https://doi.org/10.1093/noajnl/vdad009.
  3. Kalluri, R. (2016) The biology and function of fibroblasts in cancer, Nat. Rev. Cancer, 16, 582-598, https://doi.org/10.1038/nrc.2016.73.
  4. Naito, Y. (2025) How do cancer cells create cancer-associated fibroblast subtypes? Impacts of extracellular vesicles on stromal diversity, Cancer Sci., 116, 2347-2361, https://doi.org/10.1111/cas.70133.
  5. Yang, D., Liu, J., Qian, H., and Zhuang, Q. (2023) Cancer-associated fibroblasts: from basic science to anticancer therapy, Exp. Mol. Med., 55, 1322-1332, https://doi.org/10.1038/s12276-023-01013-0.
  6. Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., Becker, A., Hoshino, A., Mark, M. T., Molina, H., Xiang, J., Zhang, T., Theilen, T. M., García-Santos, G., Williams, C., Ararso, Y., Huang, Y., Rodrigues, G., Shen, T. L., Labori, K. J., Lothe, I. M., Kure, E. H., Hernandez, J., Doussot, A., Ebbesen, S. H., Grandgenett, P. M., Hollingsworth, M. A., Jain, M., Mallya, K., Batra, S. K., Jarnagin, W. R., Schwartz, R. E., Matei, I., Peinado, H., Stanger, B. Z., Bromberg, J., and Lyden, D. (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver, Nat. Cell Biol., 17, 816-826, https://doi.org/10.1038/ncb3169.
  7. Naito, Y., Yoshioka, Y., and Ochiya, T. (2022) Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via extracellular vesicles, Cancer Cell Int., 22, 367, https://doi.org/10.1186/s12935-022-02784-8.
  8. Холоденко И.В., Лупатов А.Ю., Ким Я.С., Сарыглар Р.Ю., Холоденко Р.В., Ярыгин К.Н. (2024) Мезенхимные свойства клеток глиомных линий, Клеточные технологии в биологии и медицине, 3, 147-156, https://doi.org/10.47056/1814-3490-2024-3-147-156.
  9. Atkin-Smith, G. K., Paone, S., Zanker, D. J., Duan, M., Phan, T. K., Chen, W., Hulett, M. D., and Poon, I. K. (2017) Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting, Sci. Rep., 7, 39846, https://doi.org/10.1038/srep39846.
  10. Kholodenko, I. V., Kim, Y. S., Gisina, A. M., Lupatov, A. Y., Kholodenko, R. V., and Yarygin, K. N. (2021) Analysis of the correlation between CD133 expression on human colorectal adenocarcinoma cells HT-29 and their resistance to chemotherapeutic drugs, Bull. Exp. Biol. Med., 171, 156-163, https://doi.org/10.1007/s10517-021-05188-2.
  11. Kalinovsky, D. V., Kibardin, A. V., Kholodenko, I. V., Svirshchevskaya, E. V., Doronin, I. I., Konovalova, M. V., Grechikhina, M. V., Rozov, F. N., Larin, S. S., Deyev, S. M., and Kholodenko, R. V. (2022) Therapeutic efficacy of antibody-drug conjugates targeting GD2-positive tumors, J. Immunother. Cancer, 10, e004646, https://doi.org/10.1136/jitc-2022-004646.
  12. Fayzullin, A., Sandberg, C. J., Spreadbury, M., Saberniak, B. M., Grieg, Z., Skaga, E., Langmoen, I. A., and Vik-Mo, E. O. (2019) Phenotypic and expressional heterogeneity in the invasive glioma cells, Transl. Oncol., 12, 122-133, https://doi.org/10.1016/j.tranon.2018.09.014.
  13. Piao, Y., Lu, L., and de Groot, J. (2009) AMPA receptors promote perivascular glioma invasion via beta1 integrin-dependent adhesion to the extracellular matrix, Neuro Oncol., 11, 260-273, https://doi.org/10.1215/15228517-2008-094.
  14. Cordes, N., Seidler, J., Durzok, R., Geinitz, H., and Brakebusch, C. (2006) Beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury, Oncogene, 25, 1378-1390, https://doi.org/10.1038/sj.onc.1209164.
  15. Nwagwu, C. D., Immidisetti, A. V., Bukanowska, G., Vogelbaum, M. A., and Carbonell, A. M. (2020) Convection-enhanced delivery of a first-in-class anti-β1 integrin antibody for the treatment of high-grade glioma utilizing real-time imaging, Pharmaceutics, 13, 40, https://doi.org/10.3390/pharmaceutics13010040.
  16. Soni, P., Qayoom, S., Husain, N., Kumar, P., Chandra, A., Ojha, B. K., and Gupta, R. K. (2017) CD24 and Nanog expression in stem cells in glioblastoma: correlation with response to chemoradiation and overall survival, Asian Pac. J. Cancer Prev., 18, 2215-2219, https://doi.org/10.22034/APJCP.2017.18.8.2215.
  17. Balik, V., Mirossay, P., Bohus, P., Sulla, I., Mirossay, L., and Sarissky, M. (2009) Flow cytometry analysis of neural differentiation markers expression in human glioblastomas may predict their response to chemotherapy, Cell Mol. Neurobiol., 29, 845-858, https://doi.org/10.1007/s10571-009-9366-6.
  18. Etzell, J. E., Keet, C., McDonald, W., and Banerjee, A. (2006) Medulloblastoma simulating acute myeloid leukemia: case report with a review of "myeloid antigen" expression in nonhematopoietic tissues and tumors, J. Pediatr. Hematol. Oncol., 28, 703-710, https://doi.org/10.1097/01.mph.0000243647.66734.0f.
  19. Arthurs, A. L., Keating, D. J., Stringer, B. W., and Conn, S. J. (2020) The suitability of glioblastoma cell lines as models for primary glioblastoma cell metabolism, Cancers (Basel), 12, 3722, https://doi.org/10.3390/cancers12123722.
  20. Zeng, Y., Wang, X., Wang, J., Yi, R., Long, H., Zhou, M., Luo, Q., Zhai, Z., Song, Y., and Qi, S. (2018) The tumorgenicity of glioblastoma cell line U87MG decreased during serial in vitro passage, Cell Mol. Neurobiol., 38, 1245-1252, https://doi.org/10.1007/s10571-018-0592-7.
  21. Lanskikh, D., Kuziakova, O., Baklanov, I., Penkova, A., Doroshenko, V., Buriak, I., Zhmenia, V., and Kumeiko, V. (2024) Cell-based glioma models for anticancer drug screening: from conventional adherent cell cultures to tumor-specific three-dimensional constructs, Cells, 13, 2085, https://doi.org/10.3390/cells13242085.
  22. Sorokin, M., Kholodenko, I., Kalinovsky, D., Shamanskaya, T., Doronin, I., Konovalova, D., Mironov, A., Kuzmin, D., Nikitin, D., Deyev, S., Buzdin, A., and Kholodenko, R. (2020) RNA sequencing-based identification of ganglioside GD2-positive cancer phenotype, Biomedicines, 8, 142, https://doi.org/10.3390/biomedicines8060142.
  23. Kholodenko, I. V., Kalinovsky, D. V., Doronin, I. I., Deyev, S. M., and Kholodenko, R. V. (2018) Neuroblastoma origin and therapeutic targets for immunotherapy, J. Immunol. Res., 2018, 7394268, https://doi.org/10.1155/2018/7394268.
  24. Woo, S. R., Oh, Y. T., An, J. Y., Kang, B. G., Nam, D. H., and Joo, K. M. (2015) Glioblastoma specific antigens, GD2 and CD90, are not involved in cancer stemness, Anat. Cell Biol., 48, 44-53, https://doi.org/10.5115/acb.2015.48.1.44.
  25. Chiavelli, C., Prapa, M., Rovesti, G., Silingardi, M., Neri, G., Pugliese, G., Trudu, L., Dall’Ora, M., Golinelli, G., Grisendi, G., Vinet, J., Bestagno, M., Spano, C., Papapietro, R. V., Depenni, R., Di Emidio, K., Pasetto, A., Nascimento Silva, D., Feletti, A., Berlucchi, S., Iaccarino, C., Pavesi, G., and Dominici, M. (2024) Autologous anti-GD2 CAR T cells efficiently target primary human glioblastoma, NPJ Precis. Oncol., 8, 26, https://doi.org/10.1038/s41698-024-00506-z.
  26. Kalinovsky, D. V., Kholodenko, I. V., Kibardin, A. V., Doronin, I. I., Svirshchevskaya, E. V., Ryazantsev, D. Y., Konovalova, M. V., Rozov, F. N., Larin, S. S., Deyev, S. M., and Kholodenko, R. V. (2023) Minibody-based and scFv-based antibody fragment-drug conjugates selectively eliminate GD2-positive tumor cells, Int. J. Mol. Sci., 24, 1239, https://doi.org/10.3390/ijms24021239.
  27. Makarova, A. O., Titov, M. M., Kalinovsky, D. V., Kholodenko, I. V., Kibardin, A. V., Larin, S. S., Svirshchevskaya, E. V., Deyev, S. M., and Kholodenko, R. V. (2025) Endocytosis properties of GD2-specific antibodies in tumor cells, Biochemistry (Moscow), 90, 424-435, https://doi.org/10.1134/S0006297925600395.
  28. Saito, M., Kitamura, H., and Sugiyama, K. (2001) The specificity of monoclonal antibody A2B5 to c-series gangliosides, J. Neurochem., 78, 64-74, https://doi.org/10.1046/j.1471-4159.2001.00365.x.
  29. Figarella-Branger, D., Colin, C., Baeza-Kallee, N., and Tchoghandjian, A. (2022) A2B5 expression in central nervous system and gliomas, Int. J. Mol. Sci., 23, 4670, https://doi.org/10.3390/ijms23094670.
  30. Baeza-Kallee, N., Berges, R., Soubéran, A., Colin, C., Denicolai, E., Appay, R., Tchoghandjian, A., and Figarella-Branger, D. (2019) Glycolipids recognized by A2B5 antibody promote proliferation, migration, and clonogenicity in glioblastoma cells, Cancers (Basel), 11, 1267, https://doi.org/10.3390/cancers11091267.
  31. Banerjee, H. N., Bartlett, V., Krauss, C., Aurelius, C., Johnston, K., Hedley, J., and Verma, M. (2021) Efferocytosis and the story of "find me," "eat me," and "don't eat me" signaling in the tumor microenvironment, Adv. Exp. Med. Biol., 1329, 153-162, https://doi.org/10.1007/978-3-030-73119-9_8.
  32. Michalak, M. (2024) Calreticulin: endoplasmic reticulum Ca2+ gatekeeper, J. Cell Mol. Med., 28, e17839, https://doi.org/10.1111/jcmm.17839.
  33. Osman, R., Taenet-Delorme, P., Kleman, J. P., Millet, A., and Frachet, P. (2017) Calreticulin release at an early stage of death modulates the clearance by macrophages of apoptotic cells, Front. Immunol., 8, 1034, https://doi.org/10.3389/fimmu.2017.01034.
  34. Fucikova, J., Spisek, R., Kroemer, G., and Galluzzi, L. (2021) Calreticulin and cancer, Cell Res., 31, 5-16, https://doi.org/10.1038/s41422-020-0383-9.
  35. Zhang, Y., and Zheng, J. (2020) Functions of immune checkpoint molecules beyond immune evasion, Adv. Exp. Med. Biol., 1248, 201-226, https://doi.org/10.1007/978-981-15-3266-5_9.
  36. He, X., and Xu, C. (2020) Immune checkpoint signaling and cancer immunotherapy, Cell Res., 30, 660-669, https://doi.org/10.1038/s41422-020-0343-4.
  37. Elward, K., and Gasque, P. (2003) "Eat me" and "don't eat me" signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system, Mol. Immunol., 40, 85-94, https://doi.org/10.1016/s0161-5890(03)00109-3.
  38. Wang, Z., Zhang, C., Liu, X., Wang, Z., Sun, L., Li, G., Liang, J., Hu, H., Liu, Y., Zhang, W., and Jiang, T. (2016) Molecular and clinical characterization of PD-L1 expression at transcriptional level via 976 samples of brain glioma, Oncoimmunology, 5, e1196310, https://doi.org/10.1080/2162402X.2016.1196310.
  39. Ma, F., Liu, X., Zhang, Y., Tao, Y., Zhao, L., Abusalaman, H., Huffman, C., Harbison, R. A., Puram, S. V., Wang, Y., and Peng, G. (2025) Tumor extracellular vesicle-derived PD-L1 promotes T cell senescence through lipid metabolism reprogramming, Sci. Transl. Med., 17, eadm7269, https://doi.org/10.1126/scitranslmed.adm7269.
  40. Yu, Z. L., Liu, J. Y., and Chen, G. (2022) Small extracellular vesicle PD-L1 in cancer: the knowns and unknowns, NPJ Precis. Oncol., 6, 42, https://doi.org/10.1038/s41698-022-00287-3.
  41. Oldenborg, P. A. (2013) CD47: a cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease, ISRN Hematol., 2013, 614619, https://doi.org/10.1155/2013/614619.
  42. Afzal, A., Afzal, Z., Bizink, S., Davis, A., Makahleh, S., Mohamed, Y., and Coniglio, S. J. (2024) Phagocytosis checkpoints in glioblastoma: CD47 and beyond, Curr. Issues Mol. Biol., 46, 7795-7811, https://doi.org/10.3390/cimb46080462.
  43. Blinova, G. A., Yarygin, K. N., and Kholodenko, I. V. (2024) Efferocytosis as one of the mechanisms for realizing the therapeutic effects of mesenchymal stem cells, Biomed. Chem. Res. Methods, 7, e00221, https://doi.org/10.18097/bmcrm00221.
  44. Yin, C., and Heit, B. (2021) Cellular responses to the efferocytosis of apoptotic cells, Front. Immunol., 12, 631714, https://doi.org/10.3389/fimmu.2021.631714.
  45. Clavreuil, A., and Menel, P. (2020) Mesenchymal stromal-like cells in the glioma microenvironment: what are these cells? Cancers (Basel), 12, 2628, https://doi.org/10.3390/cancers12092628.
  46. Kazakova, A. N., Lukina, M. M., Anufrieva, K. S., Bekhaeva, I. V., Ivanova, O. M., Shnaider, P. V., Slonov, A., Arapidi, G. P., and Shender, V. O. (2024) Exploring the diversity of cancer-associated fibroblasts: insights into mechanisms of drug resistance, Front. Cell Dev. Biol., 12, 1403122, https://doi.org/10.3389/fcell.2024.1403122.
  47. Agorku, D. J., Langhammer, A., Heider, U., Wild, S., Bosio, A., and Hardt, O. (2019) CD49b, CD87, and CD95 are markers for activated cancer-associated fibroblasts whereas CD39 marks quiescent normal fibroblasts in murine tumor models, Front. Oncol., 9, 716, https://doi.org/10.3389/fonc.2019.00716.
  48. Liu, X., Wang, C., Mao, H., and Wei, J. (2025) Crosstalk between cancer-associated fibroblasts and inflammation in tumor microenvironment: a novel perspective in cancer therapy (review), Oncol. Rep., 54, 93, https://doi.org/10.3892/or.2025.8926.
  49. Yang, S. X., Chen, J. H., Jiang, X. F., Wang, Q. L., Chen, Z. Q., Zhao, W., Feng, Y. H., Xin, R., Shi, J. Q., Bian, X. W. (2005) Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor, Biochem. Biophys. Res. Commun., 335, 523-528, https://doi.org/10.1016/j.bbrc.2005.07.113.
  50. Wang, L., Yi, T., Kortylewski, M., Pardoll, D. M., Zeng, D., and Yu, H. (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway, J. Exp. Med., 206, 1457-1464, https://doi.org/10.1084/jem.20090207.
  51. Nam, J. S., Terabe, M., Kang, M. J., Chae, H., Voong, N., Yang, Y. A., Laurence, A., Michalowska, A., Mamura, M., Lonning, S., Berzofsky, J. A., and Wakefield, L. M. (2008) Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17, Cancer Res., 68, 3915-3923, https://doi.org/10.1158/0008-5472.CAN-08-0206.
  52. Kast, R. E. (2015) The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir, Chin. J. Cancer, 34, 161-165, https://doi.org/10.1186/s40880-015-0010-1.
  53. Bellone, G., Smirne, C., Mauri, F. A., Tonel, E., Carbone, A., Buffolino, A., Dughera, L., Robecchi, A., Pirisi, M., and Emanuelli, G. (2006) Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival, Cancer Immunol. Immunother., 55, 684-698, https://doi.org/10.1007/s00262-005-0047-0.
  54. De Boeck, A., Ahn, B. Y., D'Mello, C., Lun, X., Menon, S. V., Alshehri, M. M., Szulzewsky, F., Shen, Y., Khan, L., Dang, N. H., Reichardt, E., Goring, K. A., King, J., Grisdale, C. J., Grinstein, N., Hambardzumyan, D., Reilly, K. M., Blough, M. D., Cairncross, J. G., Yong, V. W., Marra, M. A., Jones, S. J. M., Kaplan, D. R., McCoy, K. D., Holland, E. C., Bose, P., Chan, J. A., Robbins, S. M., and Senger, D. L. (2020) Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression, Nat. Commun., 11, 4997, https://doi.org/10.1038/s41467-020-18569-4.
  55. Zhang, J. F., Tao, T., Wang, K., Zhang, G. X., Yan, Y., Lin, H. R., Li, Y., Guan, M. W., Yu, J. J., and Wang, X. D. (2019) IL-33/ST2 axis promotes glioblastoma cell invasion by accumulating tenascin-C, Sci. Rep., 9, 20276, https://doi.org/10.1038/s41598-019-56696-1.
  56. Han, J., Alvarez-Breckenridge, C. A., Wang, Q. E., and Yu, J. (2015) TGF-β signaling and its targeting for glioma treatment, Am. J. Cancer Res., 5, 945-955.
  57. Liu, Z. W., Zhang, Y. M., Zhang, L. Y., Zhou, T., Li, Y. Y., Zhou, G. C., Miao, Z. M., Shang, M., He, J. P., Ding, N., and Liu, Y. Q. (2022) Duality of interactions between TGF-β and TNF-α during tumor formation, Front. Immunol., 12, 810286, https://doi.org/10.3389/fimmu.2021.810286.
  58. Guan, B., Li, H., Yao, J., Guo, J., Yu, F., Li, G., Wan, B., Ma, J., Huang, D., Sun, L., and Chen, Y. (2023) CCL3-CCR5 axis promotes cell migration and invasion of colon adenocarcinoma via Akt signaling pathway, Environ. Toxicol., 38, 172-184, https://doi.org/10.1002/tox.23675.
  59. Xu, H., Zhao, J., Li, J., Zhu, Z., Cui, Z., Liu, R., Lu, R., Yao, Z., and Xu, Q. (2022) Cancer associated fibroblast-derived CCL5 promotes hepatocellular carcinoma metastasis through activating HIF1α/ZEB1 axis, Cell Death Dis., 13, 478, https://doi.org/10.1038/s41419-022-04935-1.
  60. Hassan, M. S., Cwidak, N., Awasthi, N., and von Holzen, U. (2022) Cytokine interaction with cancer-associated fibroblasts in esophageal cancer, Cancer Control., 29, 10732748221078470, https://doi.org/10.1177/10732748221078470.
  61. Payne, L. S., and Huang, P. H. (2013) The pathobiology of collagen in glioma, Mol. Cancer Res., 11, 1129-1140, https://doi.org/10.1158/1541-7786.MCR-13-0236.
  62. Huijbers, I. J., Iravani, M., Popov, S., Robertson, D., Al-Sarraj, S., Jones, C. M. (2010) A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion, PLoS One, 5, e9808, https://doi.org/10.1371/journal.pone.0009808.
  63. Dong, H., Luo, L., Hong, S., Siu, H., Xiao, Y., Jin, L., Chen, R., and Xiong, M. (2010) Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma, BMC Syst. Biol., 4, 163, https://doi.org/10.1186/1752-0509-4-163.
  64. Fadok, V. A., Bratton, D. L., Konowal, A., Freed, P. W., Westcott, J. Y., and Henson, P. M. (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF, J. Clin. Invest., 101, 890-898, https://doi.org/10.1172/JCI1112.
  65. Zweemer, A. J. M., French, C. B., Mesfin, J., Gordonov, S., Meyer, A. S., and Lauffenburger, D. A. (2017) Apoptotic bodies elicit Gas6-mediated migration of AXL-expressing tumor cells, Mol. Cancer Res., 15, 1656-1666, https://doi.org/10.1158/1541-7786.MCR-17-0012.
  66. Li, Z., Wu, M., Liu, S., Liu, X., Huan, Y., Ye, Q., Yang, X., Guo, H., Liu, A., Huang, X., Yang, X., Ding, F., Xu, H., Zhou, J., Liu, P., Liu, S., Jin, Y., and Xuan, K. (2022) Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration, Mol. Ther., 30, 3193-3208, https://doi.org/10.1016/j.ymthe.2022.05.006.
  67. Li, M., Xing, X., Huang, H., Liang, C., Gao, X., Tang, Q., Xu, X., Yang, J., Liao, L., Tian, W. (2022) BMSC-derived ApoEVs promote craniofacial bone repair via ROS/JNK signaling, J. Dent. Res., 101, 714-723, https://doi.org/10.1177/00220345211068338.
  68. Kiss, R. S., Elliott, M. R., Ma, Z., Marcel, Y. L., and Ravichandran, K. S. (2006) Apoptotic cells induce a homeostatic response from phagocytes, Curr. Biol., 16, 2252-2258, https://doi.org/10.1016/j.cub.2006.09.043.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».