INDUCTION OF TUMOR-ASSOCIATED PHENOTYPE IN NORMAL FIBROBLASTS BY GLIOMA CELL APOPTOTIC BODIES
- Authors: Kovalskaya K.V1, Titov M.M2, Baskaev K.K1, Lupatov A.Y1, Potashnikova D.M3, Susova O.Y4, Kim Y.S1, Yarygin K.N1,5, Kholodenko R.V2, Kholodenko I.V1
-
Affiliations:
- Institute of Biomedical Chemistry
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS
- Lomonosov Moscow State University, Faculty of Biology
- N. N. Blokhin National Medical Research Center of Oncology
- Russian Medical Academy of Postgraduate Education of the Ministry of Healthcare of the Russian Federation
- Issue: Vol 90, No 10 (2025)
- Pages: 1511-1531
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/355116
- DOI: https://doi.org/10.31857/S0320972525100088
- ID: 355116
Cite item
Abstract
About the authors
K. V Kovalskaya
Institute of Biomedical ChemistryMoscow, Russia
M. M Titov
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RASMoscow, Russia
K. K Baskaev
Institute of Biomedical ChemistryMoscow, Russia
A. Y Lupatov
Institute of Biomedical ChemistryMoscow, Russia
D. M Potashnikova
Lomonosov Moscow State University, Faculty of BiologyMoscow, Russia
O. Y Susova
N. N. Blokhin National Medical Research Center of OncologyMoscow, Russia
Y. S Kim
Institute of Biomedical ChemistryMoscow, Russia
K. N Yarygin
Institute of Biomedical Chemistry; Russian Medical Academy of Postgraduate Education of the Ministry of Healthcare of the Russian FederationMoscow, Russia; Moscow, Russia
R. V Kholodenko
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RASMoscow, Russia
I. V Kholodenko
Institute of Biomedical Chemistry
Email: irkhol@yandex.ru
Moscow, Russia
References
- Krex, D., Klink, B., Hartmann, C., von Deimling, A., Pietsch, T., Simon, M., Sabel, M., Steinbach, J. P., Heese, O., Reifenberger, G., Weller, M., and Schackert, G. (2007) German Glioma Network. Long-term survival with glioblastoma multiforme, Brain, 130, 2596-2606, https://doi.org/10.1093/brain/awn204.
- Sharma, P., Aaroe, A., Liang, J., and Puduvalli, V. K. (2023) Tumor microenvironment in glioblastoma: current and emerging concepts, Neurooncol. Adv., 5, vdad009, https://doi.org/10.1093/noajnl/vdad009.
- Kalluri, R. (2016) The biology and function of fibroblasts in cancer, Nat. Rev. Cancer, 16, 582-598, https://doi.org/10.1038/nrc.2016.73.
- Naito, Y. (2025) How do cancer cells create cancer-associated fibroblast subtypes? Impacts of extracellular vesicles on stromal diversity, Cancer Sci., 116, 2347-2361, https://doi.org/10.1111/cas.70133.
- Yang, D., Liu, J., Qian, H., and Zhuang, Q. (2023) Cancer-associated fibroblasts: from basic science to anticancer therapy, Exp. Mol. Med., 55, 1322-1332, https://doi.org/10.1038/s12276-023-01013-0.
- Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., Becker, A., Hoshino, A., Mark, M. T., Molina, H., Xiang, J., Zhang, T., Theilen, T. M., García-Santos, G., Williams, C., Ararso, Y., Huang, Y., Rodrigues, G., Shen, T. L., Labori, K. J., Lothe, I. M., Kure, E. H., Hernandez, J., Doussot, A., Ebbesen, S. H., Grandgenett, P. M., Hollingsworth, M. A., Jain, M., Mallya, K., Batra, S. K., Jarnagin, W. R., Schwartz, R. E., Matei, I., Peinado, H., Stanger, B. Z., Bromberg, J., and Lyden, D. (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver, Nat. Cell Biol., 17, 816-826, https://doi.org/10.1038/ncb3169.
- Naito, Y., Yoshioka, Y., and Ochiya, T. (2022) Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via extracellular vesicles, Cancer Cell Int., 22, 367, https://doi.org/10.1186/s12935-022-02784-8.
- Холоденко И.В., Лупатов А.Ю., Ким Я.С., Сарыглар Р.Ю., Холоденко Р.В., Ярыгин К.Н. (2024) Мезенхимные свойства клеток глиомных линий, Клеточные технологии в биологии и медицине, 3, 147-156, https://doi.org/10.47056/1814-3490-2024-3-147-156.
- Atkin-Smith, G. K., Paone, S., Zanker, D. J., Duan, M., Phan, T. K., Chen, W., Hulett, M. D., and Poon, I. K. (2017) Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting, Sci. Rep., 7, 39846, https://doi.org/10.1038/srep39846.
- Kholodenko, I. V., Kim, Y. S., Gisina, A. M., Lupatov, A. Y., Kholodenko, R. V., and Yarygin, K. N. (2021) Analysis of the correlation between CD133 expression on human colorectal adenocarcinoma cells HT-29 and their resistance to chemotherapeutic drugs, Bull. Exp. Biol. Med., 171, 156-163, https://doi.org/10.1007/s10517-021-05188-2.
- Kalinovsky, D. V., Kibardin, A. V., Kholodenko, I. V., Svirshchevskaya, E. V., Doronin, I. I., Konovalova, M. V., Grechikhina, M. V., Rozov, F. N., Larin, S. S., Deyev, S. M., and Kholodenko, R. V. (2022) Therapeutic efficacy of antibody-drug conjugates targeting GD2-positive tumors, J. Immunother. Cancer, 10, e004646, https://doi.org/10.1136/jitc-2022-004646.
- Fayzullin, A., Sandberg, C. J., Spreadbury, M., Saberniak, B. M., Grieg, Z., Skaga, E., Langmoen, I. A., and Vik-Mo, E. O. (2019) Phenotypic and expressional heterogeneity in the invasive glioma cells, Transl. Oncol., 12, 122-133, https://doi.org/10.1016/j.tranon.2018.09.014.
- Piao, Y., Lu, L., and de Groot, J. (2009) AMPA receptors promote perivascular glioma invasion via beta1 integrin-dependent adhesion to the extracellular matrix, Neuro Oncol., 11, 260-273, https://doi.org/10.1215/15228517-2008-094.
- Cordes, N., Seidler, J., Durzok, R., Geinitz, H., and Brakebusch, C. (2006) Beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury, Oncogene, 25, 1378-1390, https://doi.org/10.1038/sj.onc.1209164.
- Nwagwu, C. D., Immidisetti, A. V., Bukanowska, G., Vogelbaum, M. A., and Carbonell, A. M. (2020) Convection-enhanced delivery of a first-in-class anti-β1 integrin antibody for the treatment of high-grade glioma utilizing real-time imaging, Pharmaceutics, 13, 40, https://doi.org/10.3390/pharmaceutics13010040.
- Soni, P., Qayoom, S., Husain, N., Kumar, P., Chandra, A., Ojha, B. K., and Gupta, R. K. (2017) CD24 and Nanog expression in stem cells in glioblastoma: correlation with response to chemoradiation and overall survival, Asian Pac. J. Cancer Prev., 18, 2215-2219, https://doi.org/10.22034/APJCP.2017.18.8.2215.
- Balik, V., Mirossay, P., Bohus, P., Sulla, I., Mirossay, L., and Sarissky, M. (2009) Flow cytometry analysis of neural differentiation markers expression in human glioblastomas may predict their response to chemotherapy, Cell Mol. Neurobiol., 29, 845-858, https://doi.org/10.1007/s10571-009-9366-6.
- Etzell, J. E., Keet, C., McDonald, W., and Banerjee, A. (2006) Medulloblastoma simulating acute myeloid leukemia: case report with a review of "myeloid antigen" expression in nonhematopoietic tissues and tumors, J. Pediatr. Hematol. Oncol., 28, 703-710, https://doi.org/10.1097/01.mph.0000243647.66734.0f.
- Arthurs, A. L., Keating, D. J., Stringer, B. W., and Conn, S. J. (2020) The suitability of glioblastoma cell lines as models for primary glioblastoma cell metabolism, Cancers (Basel), 12, 3722, https://doi.org/10.3390/cancers12123722.
- Zeng, Y., Wang, X., Wang, J., Yi, R., Long, H., Zhou, M., Luo, Q., Zhai, Z., Song, Y., and Qi, S. (2018) The tumorgenicity of glioblastoma cell line U87MG decreased during serial in vitro passage, Cell Mol. Neurobiol., 38, 1245-1252, https://doi.org/10.1007/s10571-018-0592-7.
- Lanskikh, D., Kuziakova, O., Baklanov, I., Penkova, A., Doroshenko, V., Buriak, I., Zhmenia, V., and Kumeiko, V. (2024) Cell-based glioma models for anticancer drug screening: from conventional adherent cell cultures to tumor-specific three-dimensional constructs, Cells, 13, 2085, https://doi.org/10.3390/cells13242085.
- Sorokin, M., Kholodenko, I., Kalinovsky, D., Shamanskaya, T., Doronin, I., Konovalova, D., Mironov, A., Kuzmin, D., Nikitin, D., Deyev, S., Buzdin, A., and Kholodenko, R. (2020) RNA sequencing-based identification of ganglioside GD2-positive cancer phenotype, Biomedicines, 8, 142, https://doi.org/10.3390/biomedicines8060142.
- Kholodenko, I. V., Kalinovsky, D. V., Doronin, I. I., Deyev, S. M., and Kholodenko, R. V. (2018) Neuroblastoma origin and therapeutic targets for immunotherapy, J. Immunol. Res., 2018, 7394268, https://doi.org/10.1155/2018/7394268.
- Woo, S. R., Oh, Y. T., An, J. Y., Kang, B. G., Nam, D. H., and Joo, K. M. (2015) Glioblastoma specific antigens, GD2 and CD90, are not involved in cancer stemness, Anat. Cell Biol., 48, 44-53, https://doi.org/10.5115/acb.2015.48.1.44.
- Chiavelli, C., Prapa, M., Rovesti, G., Silingardi, M., Neri, G., Pugliese, G., Trudu, L., Dall’Ora, M., Golinelli, G., Grisendi, G., Vinet, J., Bestagno, M., Spano, C., Papapietro, R. V., Depenni, R., Di Emidio, K., Pasetto, A., Nascimento Silva, D., Feletti, A., Berlucchi, S., Iaccarino, C., Pavesi, G., and Dominici, M. (2024) Autologous anti-GD2 CAR T cells efficiently target primary human glioblastoma, NPJ Precis. Oncol., 8, 26, https://doi.org/10.1038/s41698-024-00506-z.
- Kalinovsky, D. V., Kholodenko, I. V., Kibardin, A. V., Doronin, I. I., Svirshchevskaya, E. V., Ryazantsev, D. Y., Konovalova, M. V., Rozov, F. N., Larin, S. S., Deyev, S. M., and Kholodenko, R. V. (2023) Minibody-based and scFv-based antibody fragment-drug conjugates selectively eliminate GD2-positive tumor cells, Int. J. Mol. Sci., 24, 1239, https://doi.org/10.3390/ijms24021239.
- Makarova, A. O., Titov, M. M., Kalinovsky, D. V., Kholodenko, I. V., Kibardin, A. V., Larin, S. S., Svirshchevskaya, E. V., Deyev, S. M., and Kholodenko, R. V. (2025) Endocytosis properties of GD2-specific antibodies in tumor cells, Biochemistry (Moscow), 90, 424-435, https://doi.org/10.1134/S0006297925600395.
- Saito, M., Kitamura, H., and Sugiyama, K. (2001) The specificity of monoclonal antibody A2B5 to c-series gangliosides, J. Neurochem., 78, 64-74, https://doi.org/10.1046/j.1471-4159.2001.00365.x.
- Figarella-Branger, D., Colin, C., Baeza-Kallee, N., and Tchoghandjian, A. (2022) A2B5 expression in central nervous system and gliomas, Int. J. Mol. Sci., 23, 4670, https://doi.org/10.3390/ijms23094670.
- Baeza-Kallee, N., Berges, R., Soubéran, A., Colin, C., Denicolai, E., Appay, R., Tchoghandjian, A., and Figarella-Branger, D. (2019) Glycolipids recognized by A2B5 antibody promote proliferation, migration, and clonogenicity in glioblastoma cells, Cancers (Basel), 11, 1267, https://doi.org/10.3390/cancers11091267.
- Banerjee, H. N., Bartlett, V., Krauss, C., Aurelius, C., Johnston, K., Hedley, J., and Verma, M. (2021) Efferocytosis and the story of "find me," "eat me," and "don't eat me" signaling in the tumor microenvironment, Adv. Exp. Med. Biol., 1329, 153-162, https://doi.org/10.1007/978-3-030-73119-9_8.
- Michalak, M. (2024) Calreticulin: endoplasmic reticulum Ca2+ gatekeeper, J. Cell Mol. Med., 28, e17839, https://doi.org/10.1111/jcmm.17839.
- Osman, R., Taenet-Delorme, P., Kleman, J. P., Millet, A., and Frachet, P. (2017) Calreticulin release at an early stage of death modulates the clearance by macrophages of apoptotic cells, Front. Immunol., 8, 1034, https://doi.org/10.3389/fimmu.2017.01034.
- Fucikova, J., Spisek, R., Kroemer, G., and Galluzzi, L. (2021) Calreticulin and cancer, Cell Res., 31, 5-16, https://doi.org/10.1038/s41422-020-0383-9.
- Zhang, Y., and Zheng, J. (2020) Functions of immune checkpoint molecules beyond immune evasion, Adv. Exp. Med. Biol., 1248, 201-226, https://doi.org/10.1007/978-981-15-3266-5_9.
- He, X., and Xu, C. (2020) Immune checkpoint signaling and cancer immunotherapy, Cell Res., 30, 660-669, https://doi.org/10.1038/s41422-020-0343-4.
- Elward, K., and Gasque, P. (2003) "Eat me" and "don't eat me" signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system, Mol. Immunol., 40, 85-94, https://doi.org/10.1016/s0161-5890(03)00109-3.
- Wang, Z., Zhang, C., Liu, X., Wang, Z., Sun, L., Li, G., Liang, J., Hu, H., Liu, Y., Zhang, W., and Jiang, T. (2016) Molecular and clinical characterization of PD-L1 expression at transcriptional level via 976 samples of brain glioma, Oncoimmunology, 5, e1196310, https://doi.org/10.1080/2162402X.2016.1196310.
- Ma, F., Liu, X., Zhang, Y., Tao, Y., Zhao, L., Abusalaman, H., Huffman, C., Harbison, R. A., Puram, S. V., Wang, Y., and Peng, G. (2025) Tumor extracellular vesicle-derived PD-L1 promotes T cell senescence through lipid metabolism reprogramming, Sci. Transl. Med., 17, eadm7269, https://doi.org/10.1126/scitranslmed.adm7269.
- Yu, Z. L., Liu, J. Y., and Chen, G. (2022) Small extracellular vesicle PD-L1 in cancer: the knowns and unknowns, NPJ Precis. Oncol., 6, 42, https://doi.org/10.1038/s41698-022-00287-3.
- Oldenborg, P. A. (2013) CD47: a cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease, ISRN Hematol., 2013, 614619, https://doi.org/10.1155/2013/614619.
- Afzal, A., Afzal, Z., Bizink, S., Davis, A., Makahleh, S., Mohamed, Y., and Coniglio, S. J. (2024) Phagocytosis checkpoints in glioblastoma: CD47 and beyond, Curr. Issues Mol. Biol., 46, 7795-7811, https://doi.org/10.3390/cimb46080462.
- Blinova, G. A., Yarygin, K. N., and Kholodenko, I. V. (2024) Efferocytosis as one of the mechanisms for realizing the therapeutic effects of mesenchymal stem cells, Biomed. Chem. Res. Methods, 7, e00221, https://doi.org/10.18097/bmcrm00221.
- Yin, C., and Heit, B. (2021) Cellular responses to the efferocytosis of apoptotic cells, Front. Immunol., 12, 631714, https://doi.org/10.3389/fimmu.2021.631714.
- Clavreuil, A., and Menel, P. (2020) Mesenchymal stromal-like cells in the glioma microenvironment: what are these cells? Cancers (Basel), 12, 2628, https://doi.org/10.3390/cancers12092628.
- Kazakova, A. N., Lukina, M. M., Anufrieva, K. S., Bekhaeva, I. V., Ivanova, O. M., Shnaider, P. V., Slonov, A., Arapidi, G. P., and Shender, V. O. (2024) Exploring the diversity of cancer-associated fibroblasts: insights into mechanisms of drug resistance, Front. Cell Dev. Biol., 12, 1403122, https://doi.org/10.3389/fcell.2024.1403122.
- Agorku, D. J., Langhammer, A., Heider, U., Wild, S., Bosio, A., and Hardt, O. (2019) CD49b, CD87, and CD95 are markers for activated cancer-associated fibroblasts whereas CD39 marks quiescent normal fibroblasts in murine tumor models, Front. Oncol., 9, 716, https://doi.org/10.3389/fonc.2019.00716.
- Liu, X., Wang, C., Mao, H., and Wei, J. (2025) Crosstalk between cancer-associated fibroblasts and inflammation in tumor microenvironment: a novel perspective in cancer therapy (review), Oncol. Rep., 54, 93, https://doi.org/10.3892/or.2025.8926.
- Yang, S. X., Chen, J. H., Jiang, X. F., Wang, Q. L., Chen, Z. Q., Zhao, W., Feng, Y. H., Xin, R., Shi, J. Q., Bian, X. W. (2005) Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor, Biochem. Biophys. Res. Commun., 335, 523-528, https://doi.org/10.1016/j.bbrc.2005.07.113.
- Wang, L., Yi, T., Kortylewski, M., Pardoll, D. M., Zeng, D., and Yu, H. (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway, J. Exp. Med., 206, 1457-1464, https://doi.org/10.1084/jem.20090207.
- Nam, J. S., Terabe, M., Kang, M. J., Chae, H., Voong, N., Yang, Y. A., Laurence, A., Michalowska, A., Mamura, M., Lonning, S., Berzofsky, J. A., and Wakefield, L. M. (2008) Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17, Cancer Res., 68, 3915-3923, https://doi.org/10.1158/0008-5472.CAN-08-0206.
- Kast, R. E. (2015) The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir, Chin. J. Cancer, 34, 161-165, https://doi.org/10.1186/s40880-015-0010-1.
- Bellone, G., Smirne, C., Mauri, F. A., Tonel, E., Carbone, A., Buffolino, A., Dughera, L., Robecchi, A., Pirisi, M., and Emanuelli, G. (2006) Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival, Cancer Immunol. Immunother., 55, 684-698, https://doi.org/10.1007/s00262-005-0047-0.
- De Boeck, A., Ahn, B. Y., D'Mello, C., Lun, X., Menon, S. V., Alshehri, M. M., Szulzewsky, F., Shen, Y., Khan, L., Dang, N. H., Reichardt, E., Goring, K. A., King, J., Grisdale, C. J., Grinstein, N., Hambardzumyan, D., Reilly, K. M., Blough, M. D., Cairncross, J. G., Yong, V. W., Marra, M. A., Jones, S. J. M., Kaplan, D. R., McCoy, K. D., Holland, E. C., Bose, P., Chan, J. A., Robbins, S. M., and Senger, D. L. (2020) Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression, Nat. Commun., 11, 4997, https://doi.org/10.1038/s41467-020-18569-4.
- Zhang, J. F., Tao, T., Wang, K., Zhang, G. X., Yan, Y., Lin, H. R., Li, Y., Guan, M. W., Yu, J. J., and Wang, X. D. (2019) IL-33/ST2 axis promotes glioblastoma cell invasion by accumulating tenascin-C, Sci. Rep., 9, 20276, https://doi.org/10.1038/s41598-019-56696-1.
- Han, J., Alvarez-Breckenridge, C. A., Wang, Q. E., and Yu, J. (2015) TGF-β signaling and its targeting for glioma treatment, Am. J. Cancer Res., 5, 945-955.
- Liu, Z. W., Zhang, Y. M., Zhang, L. Y., Zhou, T., Li, Y. Y., Zhou, G. C., Miao, Z. M., Shang, M., He, J. P., Ding, N., and Liu, Y. Q. (2022) Duality of interactions between TGF-β and TNF-α during tumor formation, Front. Immunol., 12, 810286, https://doi.org/10.3389/fimmu.2021.810286.
- Guan, B., Li, H., Yao, J., Guo, J., Yu, F., Li, G., Wan, B., Ma, J., Huang, D., Sun, L., and Chen, Y. (2023) CCL3-CCR5 axis promotes cell migration and invasion of colon adenocarcinoma via Akt signaling pathway, Environ. Toxicol., 38, 172-184, https://doi.org/10.1002/tox.23675.
- Xu, H., Zhao, J., Li, J., Zhu, Z., Cui, Z., Liu, R., Lu, R., Yao, Z., and Xu, Q. (2022) Cancer associated fibroblast-derived CCL5 promotes hepatocellular carcinoma metastasis through activating HIF1α/ZEB1 axis, Cell Death Dis., 13, 478, https://doi.org/10.1038/s41419-022-04935-1.
- Hassan, M. S., Cwidak, N., Awasthi, N., and von Holzen, U. (2022) Cytokine interaction with cancer-associated fibroblasts in esophageal cancer, Cancer Control., 29, 10732748221078470, https://doi.org/10.1177/10732748221078470.
- Payne, L. S., and Huang, P. H. (2013) The pathobiology of collagen in glioma, Mol. Cancer Res., 11, 1129-1140, https://doi.org/10.1158/1541-7786.MCR-13-0236.
- Huijbers, I. J., Iravani, M., Popov, S., Robertson, D., Al-Sarraj, S., Jones, C. M. (2010) A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion, PLoS One, 5, e9808, https://doi.org/10.1371/journal.pone.0009808.
- Dong, H., Luo, L., Hong, S., Siu, H., Xiao, Y., Jin, L., Chen, R., and Xiong, M. (2010) Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma, BMC Syst. Biol., 4, 163, https://doi.org/10.1186/1752-0509-4-163.
- Fadok, V. A., Bratton, D. L., Konowal, A., Freed, P. W., Westcott, J. Y., and Henson, P. M. (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF, J. Clin. Invest., 101, 890-898, https://doi.org/10.1172/JCI1112.
- Zweemer, A. J. M., French, C. B., Mesfin, J., Gordonov, S., Meyer, A. S., and Lauffenburger, D. A. (2017) Apoptotic bodies elicit Gas6-mediated migration of AXL-expressing tumor cells, Mol. Cancer Res., 15, 1656-1666, https://doi.org/10.1158/1541-7786.MCR-17-0012.
- Li, Z., Wu, M., Liu, S., Liu, X., Huan, Y., Ye, Q., Yang, X., Guo, H., Liu, A., Huang, X., Yang, X., Ding, F., Xu, H., Zhou, J., Liu, P., Liu, S., Jin, Y., and Xuan, K. (2022) Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration, Mol. Ther., 30, 3193-3208, https://doi.org/10.1016/j.ymthe.2022.05.006.
- Li, M., Xing, X., Huang, H., Liang, C., Gao, X., Tang, Q., Xu, X., Yang, J., Liao, L., Tian, W. (2022) BMSC-derived ApoEVs promote craniofacial bone repair via ROS/JNK signaling, J. Dent. Res., 101, 714-723, https://doi.org/10.1177/00220345211068338.
- Kiss, R. S., Elliott, M. R., Ma, Z., Marcel, Y. L., and Ravichandran, K. S. (2006) Apoptotic cells induce a homeostatic response from phagocytes, Curr. Biol., 16, 2252-2258, https://doi.org/10.1016/j.cub.2006.09.043.
Supplementary files


