RELATIONSHIPS OF GDAPI MUTATIONS TO DISEASE PHENOTYPE AND MECHANISMS OF THERAPEUTIC ACTION OF ACTIVATORS OF OXIDATIVE METABOLISM IN A PATIENT WITH CHARCOT-MARIE-TOOTH NEUROPATHY TYPE 2K

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Development of personalized medicine, including treatments of hereditary diseases, requires translation of biochemistry advances into medical practice. Our work is dedicated to solving this problem in a clinical case of hereditary Charcot-Marie-Tooth neuropathy 2K (CMT2K) due to compound-heterozygous mutations in GDAPI gene, leading to the protein variants with the most common in Europe substitution L239F (from the father) or with a previously uncharacterized substitution A175P (from the mother). The ganglioside-induced, differentiation-associated protein GDAPI encoded by the GDAPI gene, is localized to the outer mitochondrial membrane and belongs to the glutathione-S-transferase superfamily. Our structure-function analysis of GDAPI shows that dimerization of the monomers with either L239F or A175P substitutions, along with the half-of-the-sites reactivity of GDAPI to hydrophobic ligands, may synergistically impair the binding. This mechanism explains the early onset and progress of the disease in a child, whereas the heterozygous parents are asymptomatic. Published phenotypes of the amino acid substitutions in the GDAPI region comprising the binding site for hydrophobic compounds, including the phenotypes of the homozygous L239F substitution and its compound-heterozygous combinations with other substitutions in this region are analyzed. Association of the regional substitutions with axonal form of CMT and disturbances in the thiamine diphosphate (ThDP)- and NAD+-dependent mitochondrial metabolism is revealed. Hence, the therapeutic effect of the precursors of these coenzymes, thiamine and nicotinamide riboside (NR), is studied. Oral administration of the precursors to the patient leads to increased levels of ThDP and NAD+ in the whole blood, an improvement in the hand grip strength, and, after the long-term administration, to normalization of ThDP-dependent metabolism. That is, after the therapy, the disease-altered levels of the translketolase (TKT) activity and its apoform, as well as the relationships between the levels of the holoenzyme TKT, ThDP and NAD+ in the patient's blood, approach those of healthy women. Our results demonstrate the therapeutic potential of thiamine and NR in correcting metabolic dysregulation in CMT caused by GDAPI mutations, suggesting the underlying molecular mechanisms. Genetic diagnostics and biochemical characterization of the mechanisms of mutation pathogenicity may increase efficiency of the therapy in clinically asymptomatic or early stages of the disease, as it is easier to protect from the accumulating metabolic damage than to reverse the damage.

Авторлар туралы

N. Borisova

N. V. Skilfosovsky Institute of Clinical Medicine, Sechenov University

119991 Moscow, Russia

A. Emelyanova

Lomonosov Moscow State University

119234 Moscow, Russia

O. Solovjeva

Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology

119234 Moscow, Russia

N. Balashova

Vladimirsky Moscow Regional Research and Clinical Institute; RUDN Medical Institute

129110 Moscow, Russia; 117198 Moscow, Russia

O. Sidorova

Vladimirsky Moscow Regional Research and Clinical Institute

129110 Moscow, Russia

V. Bunik

Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology; Sechenov University

Email: bunik@belozersky.msu.ru
119234 Moscow, Russia; 119991 Moscow, Russia

Әдебиет тізімі

  1. Bunik, V. I. (2024) A challenging interplay between basic research, technologies and medical education to provide therapies based on disease mechanisms, Front. Med. (Lausanne), 11, 1464672, https://doi.org/10.3389/fmed.2024.1464672.
  2. Dai, S., Zheng, J., Chen, Y., Zhu, J., Wang, X., Peng, Y., Luo, Y., Lin, T., Li, Y., Ma, M., Shi, Z., Meng, X., Sun, L., and Zhou, J. C. (2025) A cross-sectional survey on the health status of patients with Charcot-Marie-Tooth disease in a Chinese national patient group, J. Neurol., 272, 322, https://doi.org/10.1007/s00415-025-13063-7.
  3. Cassereau, J., Chevrollier, A., Bonneau, D., Verny, C., Procaccio, V., Reynier, P., and Ferré, M. (2011) A locus-specific database for mutations in GDAP1 allows analysis of genotype-phenotype correlations in Charcot-Marie-Tooth diseases type 4A and 2K, Orphanet J. Rare Dis., 6, 87, https://doi.org/10.1186/1750-1172-6-87.
  4. Kotov, S., Sidorova, O., and Borodataya, E. (2019) Mitochondrial disorders in neuromuscular pathology, Neuromusc. Dis., 9, 22-31, https://doi.org/10.17650/2222-8721-2019-9-3-22-31.
  5. Niemann, A., Ruegg, M., La Padula, V., Schenone, A., and Suter, U. (2005) Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease, J. Cell Biol., 170, 1067-1078, https://doi.org/10.1083/jcb.200507087.
  6. Pakhrin, P. S., Xie, Y., Hu, Z., Li, X., Liu, L., Huang, S., Wang, B., Yang, Z., Zhang, J., Liu, X., Xia, K., Tang, B., and Zhang, R. (2018) Genotype-phenotype correlation and frequency of distribution in a cohort of Chinese Charcot-Marie-Tooth patients associated with GDAP1 mutations, J. Neurol., 265, 637-646, https://doi.org/10.1007/s00415-018-8743-9.
  7. González-Sánchez, P., Satrústegui, J., Palau, F., and Del Arco, A. (2019) Calcium deregulation and mitochondrial bioenergetics in GDAP1-related CMT disease, Int. J. Mol. Sci., 20, 403, https://doi.org/10.3390/ijms20020403.
  8. Cantarero, L., García-Vargas, G., Hoenicka, J., and Palau, F. (2023) Differential effects of Mendelian GDAP1 clinical variants on mitochondria-lysosome membrane contacts sites, Biol. Open, 12, bio059707, https://doi.org/10.1242/bio.059707.
  9. Xia, M., Zhang, Y., Jin, K., Lu, Z., Zeng, Z., and Xiong, W. (2019) Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer, Cell Biosci., 9, 27, https://doi.org/10.1186/s13578-019-0289-8.
  10. Xin, B., Puffenberger, E., Nye, L., Wiznitzer, M., and Wang, H. (2008) A novel mutation in the GDAP1 gene is associated with autosomal recessive Charcot-Marie-Tooth disease in an Amish family, Clin. Genet., 74, 274-278, https://doi.org/10.1111/j.1399-0004.2008.01018.x.
  11. Ortiz-Santiago, A., and Ramos, E. (2021) Childhood onset homozygous recessive GDAP1 (p.Pro231Leu) mutation in a 9-year-old puerto rican pediatric female with axonal Charcot-Marie-Tooth disease: a case report, J. Pediatr. Rehabil. Med., 14, 533-537, https://doi.org/10.3233/prm-200695.
  12. Manzoor, U., Ali, A., Ali, S. L., Abdelkarem, O., Kanwal, S., Alotaibi, S. S., Baazeem, A., Baiduissenova, A., Yktiyarov, A., Hajar, A., and Olzhabay, A. (2023) Mutational screening of GDAP1 in dysphonia associated with Charcot-Marie-Tooth disease: clinical insights and phenotypic effects, J. Genet. Eng. Biotechnol., 21, 119, https://doi.org/10.1186/s43141-023-00568-9.
  13. Vivar, C., and Avila, J. D. (2019) GDAP1-related Charcot-Marie-Tooth disease: additional evidence for the c.692C>T variant as a pathogenic mutation (P3.4-045), Neurology, 92, P3.4-045, https://doi.org/10.1212/WNL.92.15_supplement.P3.4-045.
  14. Wolf, C., Pouya, A., Bitar, S., Pfeiffer, A., Bueno, D., Rojas-Charry, L., Arndt, S., Gomez-Zepeda, D., Tenzer, S., Bello, F. D., Vianello, C., Ritz, S., Schwirz, J., Dobrindt, K., Peitz, M., Hanschmann, E. M., Mencke, P., Boussaad, I., Silies, M., Brüstle, O., et al. (2022) GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton, Commun. Biol., 5, 541, https://doi.org/10.1038/s42003-022-03487-6.
  15. Kabzińska, D., Strugalska-Cynowska, H., Kostera-Pruszczyk, A., Ryniewicz, B., Posmyk, R., Midro, A., Seeman, P., Báranková, L., Zimoń, M., Baets, J., Timmerman, V., Guergueltcheva, V., Tournev, I., Sarafov, S., De Jonghe, P., Jordanova, A., Hausmanowa-Petrusewicz, I., and Kochański, A. (2010) L239F founder mutation in GDAP1 is associated with a mild Charcot-Marie-Tooth type 4C4 (CMT4C4) phenotype, Neurogenetics, 11, 357-366, https://doi.org/10.1007/s10048-010-0237-6.
  16. Noack, R., Frede, S., Albrecht, P., Henke, N., Pfeiffer, A., Knoll, K., Dehmel, T., Meyer Zu Hörste, G., Stettner, M., Kieseier, B. C., Summer, H., Golz, S., Kochanski, A., Wiedau-Pazos, M., Arnold, S., Lewerenz, J., and Methner, A. (2012) Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential, Hum. Mol. Genet., 21, 150-162, https://doi.org/10.1093/hmg/ddr450.
  17. Sutinen, A., Paffenholz, D., Nguyen, G. T. T., Ruskamo, S., Torda, A. E., and Kursula, P. (2023) Conserved intramolecular networks in GDAP1 are closely connected to CMT-linked mutations and protein stability, PLoS One, 18, e0284532, https://doi.org/10.1371/journal.pone.0284532.
  18. Marco, A., Cuesta, A., Pedrola, L., Palau, F., and Marín, I. (2004) Evolutionary and structural analyses of GDAP1, involved in Charcot-Marie-Tooth disease, characterize a novel class of glutathione transferase-related genes, Mol. Biol. Evol., 21, 176-187, https://doi.org/10.1093/molbev/msh013.
  19. Googins, M. R., Woghiren-Afegbua, A. O., Calderon, M., St Croix, C. M., Kiselyov, K. I., and VanDemark, A. P. (2020) Structural and functional divergence of GDAP1 from the glutathione S-transferase superfamily, FASEB J., 34, 7192-7207, https://doi.org/10.1096/fj.202000110R.
  20. Nguyen, G. T. T., Sutinen, A., Raasakka, A., Muruganandam, G., Loris, R., and Kursula, P. (2020) Structure of the complete dimeric human GDAP1 core domain provides insights into ligand binding and clustering of disease mutations, Front. Mol. Biosci., 7, 631232, https://doi.org/10.3389/fmolb.2020.631232.
  21. Huber, N., Bieniossek, C., Wagner, K. M., Elsässer, H. P., Suter, U., Berger, I., and Niemann, A. (2016) Glutathione-conjugating and membrane-remodeling activity of GDAP1 relies on amphipathic C-terminal domain, Sci. Rep., 6, 36930, https://doi.org/10.1038/srep36930.
  22. Cassereau, J., Chevrollier, A., Codron, P., Goizet, C., Gueguen, N., Verny, C., Reynier, P., Bonneau, D., Lenaers, G., and Procaccio, V. (2020) Oxidative stress contributes differentially to the pathophysiology of Charcot-Marie-Tooth disease type 2K, Exp. Neurol., 323, 113069, https://doi.org/10.1016/j.expneurol.2019.113069.
  23. Pla-Martín, D., Rueda, C. B., Estela, A., Sánchez-Piris, M., González-Sánchez, P., Traba, J., de la Fuente, S., Scorrano, L., Renau-Piqueras, J., Alvarez, J., Satrústegui, J., and Palau, F. (2013) Silencing of the CharcotMarie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry, Neurobiol. Dis., 55, 140-151, https://doi.org/10.1016/j.nbd.2013.03.010.
  24. Sutinen, A., Jones, N. C., Hoffmann, S. V., Ruskamo, S., and Kursula, P. (2023) Conformational analysis of membrane-proximal segments of GDAP1 in a lipidic environment using synchrotron radiation suggests a mode of assembly at the mitochondrial outer membrane, Biophys. Chem., 303, 107113, https://doi.org/10.1016/j.bpc.2023.107113.
  25. Chen, Y., Zhu, J., Wang, M., Zhao, Q., Huang, C., Tarjibayeva, S., Wang, L., Sun, L., and Zhou, J. C. (2025) Advances and clues of nutritional adjuvant therapy for Charcot-Marie-Tooth disease, J. Nutr., 155, 3642-3653, https://doi.org/10.1016/j.tjnut.2025.09.026.
  26. Gubler, C. J., Johnson, L. R., and Wittorf, J. H. (1970) Yeast transketolase (sedoheptulose-7-phosphate:d-glyceraldehyde-3-phosphate dihydroxyacetonetransferase, EC 2.2.1.1) assay of thiamine diphosphate, Methods Enzymol., 18, 120-125, https://doi.org/10.1016/0076-6879(71)18290-0.
  27. Kochetov, G. A. (1980) Practice Guidelines on Biochemistry, Vysshaya Shkola, Moscow.
  28. Solovjeva, O. N. (2002) Isolation and properties of noncovalent complex of transketolase with RNA, Biochemistry (Moscow), 67, 667-671, https://doi.org/10.1023/a:1016198321838.
  29. Tikhomirova, N. K., and Kochetov, G. A. (1990) Purification of transketolase from baker’s yeast by an immunoadsorbent, Biochem. Int., 22, 31-36.
  30. Solovjeva, O. N., Selivanov, V. A., Orlov, V. N., and Kochetov, G. A. (2019) Stages of the formation of nonequivalence of active centers of transketolase from baker’s yeast, Mol. Catal., 466, 122-129, https://doi.org/10.1016/j.mcat.2019.01.00.
  31. Heinrich, C. P., Noack, K., and Wiss, O. (1972) Chemical modification of tryptophan at the binding site of thiamine-pyrophosphate in transketolase from Baker’s yeast, Biochem. Biophys. Res. Commun., 49, 1427-1432, https://doi.org/10.1016/0006-291x(72)90498-6.
  32. Kim, M., Won, C. W., and Kim, M. (2018) Muscular grip strength normative values for a Korean population from the Korea National Health and Nutrition Examination Survey, 2014-2015, PLoS One, 13, e0201275, https://doi.org/10.1371/journal.pone.0201275.
  33. Harding, A. E., and Thomas, P. K. (1980) The clinical features of hereditary motor and sensory neuropathy types I and II, Brain, 103, 259-280, https://doi.org/10.1093/brain/103.2.259.
  34. Wong, S. L. (2016) Grip strength reference values for Canadians aged 6 to 79: Canadian Health Measures Survey, 2007 to 2013, Health Rep., 27, 3-10.
  35. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., et al. (2021) Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583-589, https://doi.org/10.1038/s41586-021-03819-2.
  36. Maupetit, J., Derreumaux, P., and Tuffery, P. (2009) PEP-FOLD: an online resource for de novo peptide structure prediction, Nucleic Acids Res., 37, W498-503, https://doi.org/10.1093/nar/gkp323.
  37. DeLano, W. L., and Bromberg, S. (2004) PyMOL user’s guide, DeLano Scientific LLC, 629.
  38. Svensson, E., and Häger-Ross, C. (2006) Hand function in Charcot Marie Tooth: test retest reliability of some measurements, Clin. Rehabil., 20, 896-908, https://doi.org/10.1177/0269215506072184.
  39. Bohannon, R. W. (2017) Test-retest reliability of measurements of hand-grip strength obtained by dynamometry from older adults: a systematic review of research in the PubMed database, J. Frailty Aging, 6, 83-87, https://doi.org/10.14283/jfa.2017.8.
  40. Artiukhov, A. V., Solovjeva, O. N., Balashova, N. V., Sidorova, O. P., Graf, A. V., and Bunik, V. I. (2024) Pharmacological doses of thiamine benefit patients with the Charcot-Marie-Tooth neuropathy by changing thiamine diphosphate levels and affecting regulation of thiamine-dependent enzymes, Biochemistry (Moscow), 89, 1161-1182, https://doi.org/10.1134/S0006297924070010.
  41. Balashova, N. V., Zavileyskiy, L. G., Artiukhov, A. V., Shaposhnikov, L. A., Sidorova, O. P., Tishkov, V. I., Tramonti, A., Pometun, A. A., and Bunik, V. I. (2022) Efficient assay and marker significance of NAD(+) in human blood, Front. Med. (Lausanne), 9, 886485, https://doi.org/10.3389/fmed.2022.886485.
  42. Reimer, U., Scherer, G., Drewello, M., Kruber, S., Schutkowski, M., and Fischer, G. (1998) Side-chain effects on peptidyl-prolyl cis/trans isomerisation, J. Mol. Biol., 279, 449-460, https://doi.org/10.1006/jmbi.1998.1770.
  43. Schmidpeter, P. A., Koch, J. R., and Schmid, F. X. (2015) Control of protein function by prolyl isomerization, Biochim. Biophys. Acta, 1850, 1973-1982, https://doi.org/10.1016/j.bbagen.2014.12.019.
  44. Ammar, N., Nelis, E., Merlini, L., Barisić, N., Amouri, R., Ceuterick, C., Martin, J. J., Timmerman, V., Hentati, F., and De Jonghe, P. (2003) Identification of novel GDAP1 mutations causing autosomal recessive Charcot-MarieTooth disease, Neuromuscul. Disord., 13, 720-728, https://doi.org/10.1016/s0960-8966(03)00093-2.
  45. Baránková, L., Vyhnálková, E., Züchner, S., Mazanec, R., Sakmaryová, I., Vondrácek, P., Merlini, L., Bojar, M., Nelis, E., De Jonghe, P., and Seeman, P. (2007) GDAP1 mutations in Czech families with early-onset CMT, Neuromuscul. Disord., 17, 482-489, https://doi.org/10.1016/j.nmd.2007.02.010.
  46. Auer-Grumbach, M., Fischer, C., Papić, L., John, E., Plecko, B., Bittner, R. E., Bernert, G., Pieber, T. R., Miltenberger, G., Schwarz, R., Windpassinger, C., Grill, F., Timmerman, V., Speicher, M. R., and Janecke, A. R. (2008) Two novel mutations in the GDAP1 and PRX genes in early onset Charcot-Marie-Tooth syndrome, Neuropediatrics, 39, 33-38, https://doi.org/10.1055/s-2008-1077085.
  47. Moroni, I., Morbin, M., Milani, M., Ciano, C., Bugiani, M., Pagliano, E., Cavallaro, T., Pareyson, D., and Taroni, F. (2009) Novel mutations in the GDAP1 gene in patients affected with early-onset axonal Charcot-Marie-Tooth type 4A, Neuromuscul. Disord., 19, 476-480, https://doi.org/10.1016/j.nmd.2009.04.014.
  48. Rougeot, C., Chabrier, S., Camdessanche, J. P., Prieur, F., d’Anjou, M. C., and Latour, P. (2008) Clinical, electrophysiological and genetic studies of two families with mutations in the GDAP1 gene, Neuropediatrics, 39, 184-187, https://doi.org/10.1055/s-0028-1085467.
  49. Binięda, K., Rzepnikowska, W., Kolakowski, D., Kaminska, J., Szczepankiewicz, A. A., Nieznańska, H., Kochański, A., and Kabzińska, D. (2021) Mutations in GDAP1 influence structure and function of the trans-Golgi network, Int. J. Mol. Sci., 22, https://doi.org/10.3390/ijms22020914.
  50. Cassereau, J., Chevrollier, A., Gueguen, N., Malinge, M. C., Letournel, F., Nicolas, G., Richard, L., Ferre, M., Verny, C., Dubas, F., Procaccio, V., Amati-Bonneau, P., Bonneau, D., and Reynier, P. (2009) Mitochondrial complex I deficiency in GDAP1-related autosomal dominant Charcot-Marie-Tooth disease (CMT2K), Neurogenetics, 10, 145-150, https://doi.org/10.1007/s10048-008-0166-9.
  51. Van den Bossche, D., Schiettecatte, J., Vekens, E., De Smet, D., Gorus, F. K., and Martens, G. A. (2012) Enzymatic pyruvate measurement by Cobas 6000 open channel assay, Clin. Lab., 58, 1091-1095.
  52. Bunik, V. (2023) The therapeutic potential of vitamins B1, B3 and B6 in Charcot-Marie-Tooth disease with the compromised status of vitamin-dependent processes, Biology (Basel), 12, 897, https://doi.org/10.3390/biology12070897.
  53. Jonus, H. C., Byrnes, C. C., Kim, J., Valle, M. L., Bartlett, M. G., Said, H. M., and Zastre, J. A. (2020) Thiamine mimetics sulbutiamine and benfotiamine as a nutraceutical approach to anticancer therapy, Biomed. Pharmacother., 121, 109648, https://doi.org/10.1016/j.biopha.2019.109648.
  54. Pawlosky, R., Demarest, T. G., King, M. T., Estrada, D., Veech, R. L., and Bohr, V. A. (2025) Effect of dietary ketosis and nicotinamide riboside on hippocampal krebs cycle intermediates and mitochondrial energetics in a DNA repair-deficient 3xTg/POLβ(+/–) Alzheimer disease mouse model, J. Neurochem., 169, e16295, https://doi.org/10.1111/jnc.16295.
  55. Schaefer, P. M., Huang, J., Butic, A., Perry, C., Yardeni, T., Tan, W., Morrow, R., Baur, J. A., and Wallace, D. C. (2022) Nicotinamide riboside alleviates exercise intolerance in ANT1-deficient mice, Mol. Metab., 64, 101560, https://doi.org/10.1016/j.molmet.2022.101560.
  56. Ahmadi, A., Begue, G., Valencia, A. P., Norman, J. E., Lidgard, B., Bennett, B. J., Van Doren, M. P., Marcinek, D. J., Fan, S., Prince, D. K., Gamboa, J., Himmelfarb, J., de Boer, I. H., Kestenbaum, B. R., and Roshanravan, B. (2023) Randomized crossover clinical trial of coenzyme Q10 and nicotinamide riboside in chronic kidney disease, JCI Insight, 8, e167274, https://doi.org/10.1172/jci.insight.167274.
  57. Kropotov, A., Kulikova, V., Nerinovski, K., Yakimov, A., Svetlova, M., Solovjeva, L., Sudnitsyna, J., Migaud, M. E., Khodorkovskiy, M., Ziegler, M., and Nikiforov, A. (2021) Equilibrative nucleoside transporters mediate the import of nicotinamide riboside and nicotinic acid riboside into human cells, Int. J. Mol. Sci., 22, 1391, https://doi.org/10.3390/ijms22031391.
  58. Overton, E., Emelyanova, A., and Bunik, V. I. (2025) Thiamine, gastrointestinal beriberi and acetylcholine signaling, Front. Nutr., 12, 1541054, https://doi.org/10.3389/fnut.2025.1541054.
  59. Ailabouni, A. S., Vijaywargi, G., Subash, S., Singh, D. K., Gaborik, Z., and Prasad, B. (2025) Is N1-methylnicotinamide a good organic cation transporter 2 (OCT2) biomarker? Metabolites, 15, 80, https://doi.org/10.3390/metabo15020080.
  60. Perez-Siles, G., Cutrupi, A., Ellis, M., Screnci, R., Mao, D., Uesugi, M., Yiu, E. M., Ryan, M. M., Choi, B. O., Nicholson, G., and Kennerson, M. L. (2020) Energy metabolism and mitochondrial defects in X-linked CharcotMarie-Tooth (CMTX6) iPSC-derived motor neurons with the p.R158H PDK3 mutation, Sci. Rep., 10, 9262, https://doi.org/10.1038/s41598-020-66266-5.
  61. Singhi, P., De Meirleir, L., Lissens, W., Singhi, S., and Saini, A. G. (2013) Pyruvate dehydrogenase-e1α deficiency presenting as recurrent demyelination: an unusual presentation and a novel mutation, JIMD Rep., 10, 107-111, https://doi.org/10.1007/8904_2012_211.
  62. Bonne, G., Benelli, C., De Meirleir, L., Lissens, W., Chaussain, M., Diry, M., Clot, J. P., Ponsot, G., Geoffroy, V., Leroux, J. P., et al. (1993) E1 pyruvate dehydrogenase deficiency in a child with motor neuropathy, Pediatr. Res., 33, 284-288, https://doi.org/10.1203/00006450-199303000-00016.
  63. Huber, N., Guimaraes, S., Schrader, M., Suter, U., and Niemann, A. (2013) Charcot-Marie-Tooth disease-associated mutants of GDAP1 dissociate its roles in peroxisomal and mitochondrial fission, EMBO Rep., 14, 545-552, https://doi.org/10.1038/embor.2013.56.
  64. Niemann, A., Wagner, K. M., Ruegg, M., and Suter, U. (2009) GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance, Neurobiol. Dis., 36, 509-520, https://doi.org/10.1016/j.nbd.2009.09.011.
  65. Thoudam, T., Chanda, D., Sinam, I. S., Kim, B. G., Kim, M. J., Oh, C. J., Lee, J. Y., Kim, M. J., Park, S. Y., Lee, S. Y., Jung, M. K., Mun, J. Y., Harris, R. A., Ishihara, N., Jeon, J. H., and Lee, I. K. (2022) Noncanonical PDK4 action alters mitochondrial dynamics to affect the cellular respiratory status, Proc. Natl. Acad. Sci. USA, 119, e2120157119, https://doi.org/10.1073/pnas.2120157119.
  66. Yamada, Y., Kusakari, Y., Akaoka, M., Watanabe, M., Tanihata, J., Nishioka, N., Bochimoto, H., Akaike, T., Tachibana, T., and Minamisawa, S. (2021) Thiamine treatment preserves cardiac function against ischemia injury via maintaining mitochondrial size and ATP levels, J. Appl. Physiol. (1985), 130, 26-35, https://doi.org/10.1152/japplphysiol.00578.2020.
  67. Klyuyeva, A., Tuganova, A., Kedishvili, N., and Popov, K. M. (2019) Tissue-specific kinase expression and activity regulate flux through the pyruvate dehydrogenase complex, J. Biol. Chem., 294, 838-851, https://doi.org/10.1074/jbc.RA118.006433.
  68. Kropotov, A., Kulikova, V., Solovjeva, L., Yakimov, A., Nerinovski, K., Svetlova, M., Sudnitsyna, J., Plusnina, A., Antipova, M., Khodorkovskiy, M., Migaud, M. E., Gambaryan, S., Ziegler, M., and Nikiforov, A. (2022) Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells, J. Biol. Chem., 298, 102615, https://doi.org/10.1016/j.jbc.2022.102615.
  69. Song, W. S., Shen, X., Du, K., Ramirez, C. B., Park, S. H., Cao, Y., Le, J., Bae, H., Kim, J., Chun, Y., Khong, N. J., Kim, M., Jung, S., Choi, W., Lopez, M. L., Said, Z., Song, Z., Lee, S. G., Nicholas, D., Sasaki, Y., et al. (2025) Nicotinic acid riboside maintains NAD(+) homeostasis and ameliorates aging-associated NAD(+) decline, Cell Metab., 37, 1616-1618, https://doi.org/10.1016/j.cmet.2025.05.004.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».