A REDOX-REGULATED, HETERODIMERIC NADH:CINNAMATE REDUCTASE IN Vibrio ruber

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Genes of putative reductases of α,β-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.

Авторлар туралы

Y. Bertsova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow Russia

M. Serebryakova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow Russia

V. Anashkin

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow Russia

A. Baykov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow Russia

A. Bogachev

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: bogachev@belozersky.msu.ru
119234 Moscow Russia

Әдебиет тізімі

  1. Tischer, W., Bader, J., and Simon, H. (1979) Purification and some properties of a hitherto-unknown enzyme reducing the carbon-carbon double bond of α,β-unsaturated carboxylate anions, Eur. J. Biochem., 97, 103-112, https://doi.org/10.1111/j.1432-1033.
  2. Besteiro, S., Biran, M., Biteau, N., Coustou, V., Baltz, T., Canioni, P., and Bringaud, F. (2002) Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase, J. Biol. Chem., 277, 38001-38012, https://doi.org/10.1074/jbc.M201759200.
  3. Bertsova, Y. V., Oleynikov, I. P., and Bogachev, A. V. (2020) A new water-soluble bacterial NADH: fumarate oxidoreductase, FEMS Microbiol. Lett., 367, fnaa175, https://doi.org/10.1093/femsle/fnaa175.
  4. Bertsova, Y. V., Serebryakova, M. V., Baykov, A. A., and Bogachev, A. V. (2022) A novel, NADH-dependent acrylate reductase in Vibrio harveyi, Appl. Environ. Microbiol., 88, e0051922, https://doi.org/10.1128/aem.00519-22.
  5. Bertsova, Y. V., Kostyrko, V. A., Baykov, A. A., and Bogachev, A. V. (2014) Localization-controlled specificity of FAD:threonine flavin transferases in Klebsiella pneumoniae and its implications for the mechanism of Na+-translocating NADH:quinone oxidoreductase, Biochim. Biophys. Acta, 1837, 1122-1129, https://doi.org/10.1016/j.bbabio.2013.12.006.
  6. Serebryakova, M. V., Bertsova, Y. V., Sokolov, S. S., Kolesnikov, A. A., Baykov, A. A., and Bogachev, A. V. (2018) Catalytically important flavin linked through a phosphoester bond in a eukaryotic fumarate reductase, Biochimie, 149, 34-40, https://doi.org/10.1016/j.biochi.2018.03.013.
  7. Rohdich, F., Wiese, A., Feicht, R., Simon, H., and Bacher, A. (2001) Enoate reductases of Clostridia. Cloning, sequencing, and expression, J. Biol. Chem., 276, 5779-5787, https://doi.org/10.1074/jbc.M008656200.
  8. Kuno, S., Bacher, A., and Simon, H. (1985) Structure of enoate reductase from a Clostridium tyrobutyricum (C. spec. La1), Biol. Chem. Hoppe Seyler, 366, 463-472, https://doi.org/10.1515/bchm3.1985.366.1.463.
  9. Caldeira, J., Feicht, R., White, H., Teixeira, M., Moura, J. J., Simon, H., and Moura, I. (1996) EPR and Mössbauer spectroscopic studies on enoate reductase, J. Biol. Chem., 271, 18743-18748, https://doi.org/10.1074/jbc.271.31.18743.
  10. Giesel, H., and Simon, H. (1983) On the occurrence of enoate reductase and 2-oxo-carboxylate reductase in clostridia and some observations on the amino acid fermentation by Peptostreptococcus anaerobius, Arch. Microbiol., 135, 51-57, https://doi.org/10.1007/BF00419482.
  11. Mordaka, P. M., Hall, S. J., Minton, N., and Stephens, G. (2018) Recombinant expression and characterisation of the oxygen-sensitive 2-enoate reductase from Clostridium sporogenes, Microbiology (Reading), 164, 122-132, https://doi.org/10.1099/mic.0.000568.
  12. Shieh, W. Y., Chen, Y. W., Chaw, S. M., and Chiu, H. H. (2003) Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water, Int. J. Syst. Evol. Microbiol., 53, 479-484, https://doi.org/10.1099/ijs.0.02307-0.
  13. Bogachev, A. V., Bertsova, Y. V., Bloch, D. A., and Verkhovsky, M. I. (2012) Urocanate reductase: Identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1, Mol. Microbiol., 86, 1452-1463, https://doi.org/10.1111/mmi.12067.
  14. Light, S. H., Méheust, R., Ferrell, J. L., Cho, J., Deng, D., Agostoni, M., Iavarone, A. T., Banfield, J. F., D’Orazio, S. E. F., and Portnoy, D. A. (2019) Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria, Proc. Natl. Acad. Sci. USA, 116, 26892-26899, https://doi.org/10.1073/pnas.1915678116.
  15. Bogachev, A. V., Baykov, A. A., and Bertsova, Y. V. (2018) Flavin transferase: the maturation factor of flavin-containing oxidoreductases, Biochem. Soc. Trans., 46, 1161-1169, https://doi.org/10.1042/BST20180524.
  16. Koike, H., Sasaki, H., Kobori, T., Zenno, S., Saigo, K., Murphy, M. E., Adman, E. T., and Tanokura, M. (1998) 1.8 Å crystal structure of the major NAD(P)H:FMN oxidoreductase of a bioluminescent bacterium, Vibrio fischeri: overall structure, cofactor and substrate-analog binding, and comparison with related flavoproteins, J. Mol. Biol., 280, 259-273, https://doi.org/10.1006/jmbi.1998.1871.
  17. Bertsova, Y. V., Kulik, L. V., Mamedov, M. D., Baykov, A. A., and Bogachev, A. V. (2019) Flavodoxin with an air-stable flavin semiquinone in a green sulfur bacterium, Photosynth. Res., 142, 127-136, https://doi.org/10.1007/s11120-019-00658-1.
  18. Bertsova, Y. V., Fadeeva, M. S., Kostyrko, V. A., Serebryakova, M. V., Baykov, A. A., and Bogachev, A. V. (2013) Alternative pyrimidine biosynthesis protein ApbE is a flavin transferase catalyzing covalent attachment of FMN to a threonine residue in bacterial flavoproteins, J. Biol. Chem., 288, 14276-14286, https://doi.org/10.1074/jbc.M113.455402.
  19. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
  20. Ells, A. H. (1959) A colorimetric method for the assay of soluble succinic dehydogenase and pyridinenucleotide-linked dehydrogenases, Arch. Biochem. Biophys., 85, 561-562, https://doi.org/10.1016/0003-9861(59)90527-2.
  21. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583-589, https://doi.org/10.1038/s41586-021-03819-2.
  22. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022) ColabFold: making protein folding accessible to all, Nat. Meth., 19, 679-682, https://doi.org/10.1038/s41592-022-01488-1.
  23. Trott, O., and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31, 455-461, https://doi.org/10.1002/jcc.21334.
  24. Case, D.A., Aktulga, H. M., Belfon, K., Ben-Shalom, I. Y., Berryman, J. T., Brozell, S. R., et al. (2022) Amber 2022, University of California, San Francisco.
  25. Bolanos-Garcia, V. M., and Davies, O. R. (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography, Biochim. Biophys. Acta, 1760, 1304-1313, https://doi.org/10.1016/j.bbagen.2006.03.027.
  26. Bertsova, Y. V., Serebryakova, M. V., Baykov, A. A., and Bogachev, A. V. (2021) The flavin transferase ApbE flavinylates the ferredoxin:NAD+-oxidoreductase Rnf required for N2 fixation in Azotobacter vinelandii, FEMS Microbiol. Lett., 368, fnab130, https://doi.org/10.1093/femsle/fnab130.
  27. Hertzberger, R., Arents, J., Dekker, H. L., Pridmore, R. D., Gysler, C., Kleerebezem, M., and de Mattos, M. J. (2014) H2O2 production in species of the Lactobacillus acidophilus group: a central role for a novel NADH-dependent flavin reductase, Appl. Environ. Microbiol., 80, 2229-2239, https://doi.org/10.1128/AEM.04272213.
  28. Kim, S., Kim, C. M., Son, Y. J., Choi, J. Y., Siegenthaler, R. K., Lee, Y., Jang, T. H., Song, J., Kang, H., Kaiser, C. A., and Park, H. H. (2018) Molecular basis of maintaining an oxidizing environment under anaerobiosis by soluble fumarate reductase, Nat. Commun., 9, 4867, https://doi.org/10.1038/s41467-018-07285-9.
  29. Agarwal, R., Bonanno, J. B., Burley, S. K., and Swaminathan, S. (2006) Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal, Acta Crystallogr. D Biol. Crystallogr., 62, 383-391, https://doi.org/10.1107/S0907444906001600.
  30. Borshchevskiy, V., Round, E., Bertsova, Y., Polovinkin, V., Gushchin, I., Ishchenko, A., Kovalev, K., Mishin, A., Kachalova, G., Popov, A., Bogachev, A., and Gordeliy, V. (2015) Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi, PLoS One, 10, e0118548, https://doi.org/10.1371/journal.pone.0118548.
  31. Venskutonytė, R., Koh, A., Stenström, O., Khan, M. T., Lundqvist, A., Akke, M., Bäckhed, F., and Lindkvist-Petersson, K. (2021) Structural characterization of the microbial enzyme urocanate reductase mediating imidazole propionate production, Nat. Commun., 12, 1347, https://doi.org/10.1038/s41467-021-21548-y.
  32. Coustou, V., Besteiro, S., Rivière, L., Biran, M., Biteau, N., Franconi, J. M., Boshart, M., Baltz, T., and Bringaud, F. (2005) A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei, J. Biol. Chem., 280, 16559-16570, https://doi.org/10.1074/jbc.M500343200.
  33. Wargnies, M., Plazolles, N., Schenk, R., Villafraz, O., Dupuy, J.W., Biran, M., Bachmaier, S., Baudouin, H., Clayton, C., Boshart, M., and Bringaud, F. (2021) Metabolic selection of a homologous recombination-mediated gene loss protects Trypanosoma brucei from ROS production by glycosomal fumarate reductase, J. Biol. Chem., 296, 100548, https://doi.org/10.1016/j.jbc.2021.100548.
  34. Page, C. C., Moser, C. C., Chen, X., and Dutton, P. L. (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction, Nature, 402, 47-52, https://doi.org/10.1038/46972.
  35. Sogin, E. M., Michellod, D., Gruber-Vodicka, H. R., Bourceau, P., Geier, B., Meier, D. V., Seidel, M., Ahmerkamp, S., Schorn, S., D’Angelo, G., Procaccini, G., Dubilier, N., and Liebeke, M. (2022) Sugars dominate the seagrass rhizosphere, Nat. Ecol. Evol., 6, 866-877, https://doi.org/10.1038/s41559-022-01740-z.
  36. Bertsch, J., Parthasarathy, A., Buckel, W., and Müller, V. (2013) An electron-bifurcating caffeyl-CoA reductase, J. Biol. Chem., 288, 11304-11311, https://doi.org/10.1074/jbc.M112.444919.
  37. Martone, P. T., Estevez, J. M., Lu, F., Ruel, K., Denny, M. W., Somerville, C., and Ralph, J. (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture, Curr. Biol., 19, 169-175, https://doi.org/10.1016/j.cub.2008.12.031.
  38. Fernando, I. P., Kim, M., Son, K. T., Jeong, Y., and Jeon, Y. J. (2016) Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach, J. Med. Food, 19, 615-628, https://doi.org/10.1089/jmf.2016.3706.
  39. Rameshkumar, N., and Nair, S. (2009) Isolation and molecular characterization of genetically diverse antagonistic, diazotrophic red-pigmented vibrios from different mangrove rhizospheres, FEMS Microbiol. Ecol., 67, 455-467, https://doi.org/10.1111/j.1574-6941.2008.00638.x.
  40. Smith, E. A., and Macfarlane, G. T. (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism, J. Appl. Bacteriol., 81, 288-302, https://doi.org/10.1111/j.1365-2672.1996.tb04331.x.
  41. Knaus, T., Toogood, H. S., and Scrutton, N. S. (2016) Ene-Reductases and Their Applications. Green Biocatalysis, John Wiley and Sons, Inc., pp. 473-488.
  42. Sievers, F., and Higgins, D. G. (2018) Clustal Omega for making accurate alignments of many protein sequences, Protein Sci., 27, 135-145, https://doi.org/10.1002/pro.3290.

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>