To be mobile or not: the variety of reverse transcriptases and their recruitment by host genomes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Reverse transcriptases (RT), or RNA-dependent DNA polymerases, are unorthodox enzymes that originally added a new angle to the conventional view of the unidirectional flow of genetic information in the cell from DNA to RNA to protein. First discovered in vertebrate retroviruses, RTs were since re-discovered in most eukaryotes, bacteria, and archaea, spanning essentially all domains of life. For retroviruses, RTs provide the ability to copy the RNA genome into DNA for subsequent incorporation into the host genome, which is essential for their replication and survival. In cellular organisms, most RT sequences originate from retrotransposons, the type of self-replicating genetic elements that rely on reverse transcription to copy and paste their sequences into new genomic locations. Some retroelements, however, can undergo domestication, eventually becoming a valuable addition to the overall repertoire of cellular enzymes. They can be beneficial yet accessory, like the diversity-generating elements, or even essential, like the telomerase reverse transcriptases. Nowadays, ever-increasing numbers of domesticated RT-carrying genetic elements are being discovered. It may be argued that domesticated RTs and reverse transcription in general is more widespread in cellular organisms than previously thought, and that many important cellular functions, such as chromosome end maintenance, may evolve from an originally selfish process of converting RNA into DNA.

About the authors

I. R Arkhipova

Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory

Email: iarkhipova@mbl.edu
Woods Hole, MA 02543 USA

I. A Yushenova

Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory

Email: iyushenova@mbl.edu
Woods Hole, MA 02543 USA

References

  1. Olovnikov, A. M. (1971) Principle of marginotomy in template synthesis of polynucleotides [in Russian], Dokl. Akad. Nauk SSSR, 201, 1496-1499.
  2. Olovnikov, A. M. (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 41, 181-190, doi: 10.1016/0022-5193(73)90198-7.
  3. Watson, J. D. (1972) Origin of concatemeric T7 DNA, Nat. New Biol., 239, 197-201, doi: 10.1038/newbio239197a0.
  4. Greider, C. W., and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43, 405-413, doi: 10.1016/0092-8674(85)90170-9.
  5. Greider, C. W., and Blackburn, E. H. (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis, Nature, 337, 331-337, doi: 10.1038/337331a0.
  6. Temin, H. M., and Mizutani, S. (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus, Nature, 226, 1211-1213, doi: 10.1038/2261211a0.
  7. Baltimore, D. (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses, Nature, 226, 1209-1211, doi: 10.1038/2261209a0.
  8. Temin, H. M. (1964) Nature of the provirus of Rous sarcoma, Nat. Cancer Inst. Monogr., 17, 557-570.
  9. Temin, H. M. (1985) Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons, and retrotranscripts, Mol. Biol. Evol., 2, 455-468, doi: 10.1093/oxfordjournals.molbev.a040365.
  10. Toh, H., Hayashida, H., and Miyata, T. (1983) Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus, Nature, 305, 827-829, doi: 10.1038/305827a0.
  11. Georgiev, G. P., Ilyin, Y. V., Ryskov, A. P., Tchurikov, N. A., Yenikolopov, G. N., Gvozdev, V. A., and Ananiev, E. V. (1977) Isolation of eukaryotic DNA fragments containing structural genes and the adjacent sequences, Science, 195, 394-397, doi: 10.1126/science.401545.
  12. Finnegan, D. J., Rubin, G. M., Young, M. W., and Hogness, D. S. (1978) Repeated gene families in Drosophila melanogaster, Cold Spring Harb. Symp. Quant. Biol., 42, 1053-1063, doi: 10.1101/sqb.1978.042.01.106.
  13. Glover, D. M., White, R. L., Finnegan, D. J., and Hogness, D. S. (1975) Characterization of six cloned DNAs from Drosophila melanogaster, including one that contains the genes for rRNA, Cell, 5, 149-157, doi: 10.1016/0092-8674(75)90023-9.
  14. Schaffner, W., Gross, K., Telford, J., and Birnstiel, M. (1976) Molecular analysis of the histone gene cluster of Psammechinus miliaris: II. The arrangement of the five histone-coding and spacer sequences, Cell, 8, 471-478, doi: 10.1016/0092-8674(76)90214-2.
  15. Georgiev, G. P. (1984) Mobile genetic elements in animal cells and their biological significance, Eur. J. Biochem., 145, 203-220, doi: 10.1111/j.1432-1033.1984.tb08541.x.
  16. Saigo, K., Kugimiya, W., Matsuo, Y., Inouye, S., Yoshioka, K., and Yuki, S. (1984) Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster, Nature, 312, 659-661, doi: 10.1038/312659a0.
  17. Emori, Y., Shiba, T., Kanaya, S., Inouye, S., Yuki, S., and Saigo, K. (1985) The nucleotide sequences of copia and copia-related RNA in Drosophila virus-like particles, Nature, 315, 773-776, doi: 10.1038/315773a0.
  18. Michel, F., and Lang, B. F. (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses, Nature, 316, 641-643, doi: 10.1038/316641a0.
  19. Cappello, J., Handelsman, K., and Lodish, H. F. (1985) Sequence of Dictyostelium DIRS-1: an apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence, Cell, 43, 105-115, doi: 10.1016/0092-8674(85)90016-9.
  20. Hattori, M., Kuhara, S., Takenaka, O., and Sakaki, Y. (1986) L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein, Nature, 321, 625-628, doi: 10.1038/321625a0.
  21. Fawcett, D. H., Lister, C. K., Kellett, E., and Finnegan, D. J. (1986) Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs, Cell, 47, 1007-1015, doi: 10.1016/0092-8674(86)90815-9.
  22. Lampson, B. C., Sun, J., Hsu, M. Y., Vallejo-Ramirez, J., Inouye, S., and Inouye, M. (1989) Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA, Science, 243, 1033-1038, doi: 10.1126/science.2466332.
  23. Lim, D., and Maas, W. K. (1989) Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B, Cell, 56, 891-904, doi: 10.1016/0092-8674(89)90693-4.
  24. Evgen'ev, M. B., Zelentsova, H., Shostak, N., Kozitsina, M., Barskyi, V., Lankenau, D. H., and Corces, V. G. (1997) Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis, Proc. Natl. Acad. Sci. USA, 94, 196-201, doi: 10.1073/pnas.94.1.196.
  25. Lundblad, V., and Blackburn, E. H. (1990) RNA-dependent polymerase motifs in ESTl: Tentative identification of a protein component of an essential yeast telomerase, Cell, 60, 529-530, doi: 10.1016/0092-8674(90)90653-v.
  26. Lingner, J., Hughes, T. R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T. R. (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase, Science, 276, 561-567, doi: 10.1126/science.276.5312.561.
  27. Olovnikov, A. M. (1996) Telomeres, telomerase, and aging: origin of the theory, Exp. Gerontol., 31, 443-448, doi: 10.1016/0531-5565(96)00005-8.
  28. Arkhipova, I. R., Mazo, A. M., Cherkasova, V. A., Gorelova, T. V., Schuppe, N. G., and Ilyin, Y. V. (1986) The steps of reverse transcription of Drosophila mobile genetic elements and U3-R-U5 structure of their LTRs, Cell, 44, 555-563, doi: 10.1016/0092-8674(86)90265-5.
  29. Krupovic, M., Blomberg, J., Coffin, J. M., Dasgupta, I., Fan, H., Geering, A. D., Gifford, R., Harrach, B., Hull, R., Johnson, W., Kreuze, J. F., Lindemann, D., Llorens, C., Lockhart, B., Mayer, J., Muller, E., Olszewski, N., Pappu, H. R., Pooggin, M., Richert-Poggeler, K. R., et al. (2018) Ortervirales: A new viral order unifying five families of reverse-transcribing viruses, J. Virol., 92, e00515-18, doi: 10.1128/jvi.00515-18.
  30. Paul, B. G., Yushenova, I. A., and Arkhipova, I. R. (2022) The Diversity of Reverse Transcriptases in Retrotransposons and Human Disease (Gabriel, A., ed.) World Scientific, Singapore, pp. 1-28, doi: 10.1142/9789811249228_0001.
  31. Lambowitz, A. M., and Belfort, M. (2015) Mobile bacterial group II introns at the crux of eukaryotic evolution, Microbiol. Spectr., 3, doi: 10.1128/microbiolspec.MDNA3-0050-2014.
  32. Arkhipova, I. R., and Yushenova, I. A. (2019) Giant transposons in eukaryotes: Is bigger better? Genome Biol. Evol., 11, 906-918, doi: 10.1093/gbe/evz041.
  33. Gao, L., Altae-Tran, H., Böhning, F., Makarova, K. S., Segel, M., Schmid-Burgk, J. L., Koob, J., Wolf, Y. I., Koonin, E. V., and Zhang, F. (2020) Diverse enzymatic activities mediate antiviral immunity in prokaryotes, Science, 369, 1077-1084, doi: 10.1126/science.aba0372.
  34. Millman, A., Bernheim, A., Stokar-Avihail, A., Fedorenko, T., Voichek, M., Leavitt, A., Oppenheimer-Shaanan, Y., and Sorek, R. (2020) Bacterial retrons function in anti-phage defense, Cell, 183, 1551-1561, doi: 10.1016/j.cell.2020.09.065.
  35. Bobonis, J., Mitosch, K., Mateus, A., Karcher, N., Kritikos, G., Selkrig, J., Zietek, M., Monzon, V., Pfalz, B., Garcia-Santamarina, S., Galardini, M., Sueki, A., Kobayashi, C., Stein, F., Bateman, A., Zeller, G., Savitski, M. M., Elfenbein, J. R., Andrews-Polymenis, H. L., and Typas, A. (2022) Bacterial retrons encode phage-defending tripartite toxin-antitoxin systems, Nature, 609, 144-150, doi: 10.1038/s41586-022-05091-4.
  36. Mestre, M. R., González-Delgado, A., Gutiérrez-Rus, L. I., Martínez-Abarca, F., and Toro, N. (2020) Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems, Nucleic Acids Res., 48, 12632-12647, doi: 10.1093/nar/gkaa1149.
  37. Wang, Y., Guan, Z., Wang, C., Nie, Y., Chen, Y., Qian, Z., Cui, Y., Xu, H., Wang, Q., Zhao, F., Zhang, D., Tao, P., Sun, M., Yin, P., Jin, S., Wu, S., and Zou, T. (2022) Cryo-EM structures of Escherichia coli Ec86 retron complexes reveal architecture and defence mechanism, Nat. Microbiol., 7, 1480-1489, doi: 10.1038/s41564-022-01197-7.
  38. Guo, H., Arambula, D., Ghosh, P., and Miller, J. F. (2014) Diversity-generating retroelements in phage and bacterial genomes, Microbiol. Spectr., 2, MDNA3-0029-2014, doi: 10.1128/microbiolspec.MDNA3-0029-2014.
  39. Paul, B. G., Burstein, D., Castelle, C. J., Handa, S., Arambula, D., Czornyj, E., Thomas, B. C., Ghosh, P., Miller, J. F., Banfield, J. F., and Valentine, D. L. (2017) Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea, Nat. Microbiol., 2, 17045, doi: 10.1038/nmicrobiol.2017.45.
  40. Roux, S., Paul, B. G., Bagby, S. C., Nayfach, S., Allen, M. A., Attwood, G., Cavicchioli, R., Chistoserdova, L., Gruninger, R. J., Hallam, S. J., Hernandez, M. E., Hess, M., Liu, W. T., McAllister, T. A., O'Malley, M. A., Peng, X., Rich, V. I., Saleska, S. R., and Eloe-Fadrosh, E. A. (2021) Ecology and molecular targets of hypermutation in the global microbiome, Nat. Commun., 12, 3076, doi: 10.1038/s41467-021-23402-7.
  41. Paul, B. G., and Eren, A. M. (2022) Eco-evolutionary significance of domesticated retroelements in microbial genomes, Mobile DNA, 13, 6, doi: 10.1186/s13100-022-00262-6.
  42. Fortier, L. C., Bouchard, J. D., and Moineau, S. (2005) Expression and site-directed mutagenesis of the lactococcal abortive phage infection protein AbiK, J. Bacteriol., 187, 3721-3730, doi: 10.1128/jb.187.11.3721-3730.2005.
  43. Lopatina, A., Tal, N., and Sorek, R. (2020) Abortive infection: bacterial suicide as an antiviral immune strategy, Annu. Rev. Virol., 7, 371-384, doi: 10.1146/annurev-virology-011620-040628.
  44. Wang, C., Villion, M., Semper, C., Coros, C., Moineau, S., and Zimmerly, S. (2011) A reverse transcriptase-related protein mediates phage resistance and polymerizes untemplated DNA in vitro, Nucleic Acids Res., 39, 7620-7629, doi: 10.1093/nar/gkr397.
  45. Mestre, M. R., Gao, L. A., Shah, S. A., López-Beltrán, A., González-Delgado, A., Martínez-Abarca, F., Iranzo, J., Redrejo-Rodríguez, M., Zhang, F., and Toro, N. (2022) UG/Abi: a highly diverse family of prokaryotic reverse transcriptases associated with defense functions, Nucleic Acids Res., 50, 6084-6101, doi: 10.1093/nar/gkac467.
  46. Figiel, M., Gapińska, M., Czarnocki-Cieciura, M., Zajko, W., Sroka, M., Skowronek, K., and Nowotny, M. (2022) Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases, Nucleic Acids Res., 50, 10026-10040, doi: 10.1093/nar/gkac772.
  47. Zimmerly, S., and Wu, L. (2015) An unexplored diversity of reverse transcriptases in bacteria, Microbiol. Spectrum, 3, MDNA3-0058-2014, doi: 10.1128/microbiolspec.MDNA3-0058-2014.
  48. Simon, D. M., and Zimmerly, S. (2008) A diversity of uncharacterized reverse transcriptases in bacteria, Nucleic Acids Res., 36, 7219-7229, doi: 10.1093/nar/gkn867.
  49. Kojima, K. K., and Kanehisa, M. (2008) Systematic survey for novel types of prokaryotic retroelements based on gene neighborhood and protein architecture, Mol. Biol. Evol., 25, 1395-1404, doi: 10.1093/molbev/msn081.
  50. Toro, N., Martinez-Abarca, F., Mestre, M. R., and Gonzalez-Delgado, A. (2019) Multiple origins of reverse transcriptases linked to CRISPR-Cas systems, RNA Biol., 16, 1486-1493, doi: 10.1080/15476286.2019.1639310.
  51. Silas, S., Mohr, G., Sidote, D. J., Markham, L. M., Sanchez-Amat, A., Bhaya, D., Lambowitz, A. M., and Fire, A. Z. (2016) Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein, Science, 351, aad4234, doi: 10.1126/science.aad4234.
  52. Mohr, G., Silas, S., Stamos, J. L., Makarova, K. S., Markham, L. M., Yao, J., Lucas-Elio, P., Sanchez-Amat, A., Fire, A. Z., Koonin, E. V., and Lambowitz, A. M. (2018) A reverse transcriptase-Cas1 fusion protein contains a Cas6 domain required for both CRISPR RNA biogenesis and RNA spacer acquisition, Mol. Cell, 72, 700-714, doi: 10.1016/j.molcel.2018.09.013.
  53. Park, S. K., Mohr, G., Yao, J., Russell, R., and Lambowitz, A. M. (2022) Group II intron-like reverse transcriptases function in double-strand break repair, Cell, 185, 3671-3688.e3623, doi: 10.1016/j.cell.2022.08.014.
  54. Fragkiadaki, P., Renieri, E., Kalliantasi, K., Kouvidi, E., Apalaki, E., Vakonaki, E., Mamoulakis, C., Spandidos, D. A., and Tsatsakis, A. (2022) Τelomerase inhibitors and activators in aging and cancer: A systematic review, Mol. Med. Rep., 25, 158, doi: 10.3892/mmr.2022.12674.
  55. Gladyshev, E. A., and Arkhipova, I. R. (2011) A widespread class of reverse transcriptase-related cellular genes, Proc. Natl. Acad. Sci. USA, 108, 20311-20316, doi: 10.1073/pnas.1100266108.
  56. Yushenova, I. A., and Arkhipova, I. R. (2018) Biochemical properties of bacterial reverse transcriptase-related (rvt) gene products: multimerization, protein priming, and nucleotide preference, Curr. Genet., 64, 1287-1301, doi: 10.1007/s00294-018-0844-6.
  57. Dlakic, M., and Mushegian, A. (2011) Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase, RNA, 17, 799-808, doi: 10.1261/rna.2396011.
  58. Grainger, R. J., and Beggs, J. D. (2005) Prp8 protein: at the heart of the spliceosome, RNA, 11, 533-557, doi: 10.1261/rna.2220705.
  59. Galej, W. P., Oubridge, C., Newman, A. J., and Nagai, K. (2013) Crystal structure of Prp8 reveals active site cavity of the spliceosome, Nature, 493, 638-643, doi: 10.1038/nature11843.
  60. Lambert, M. E., McDonald, J. F., and Weinstein, I. B. (1988) Eukaryotic Transposable Elements as Mutagenic Agents, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  61. Arkhipova, I. R. (2012) Telomerase, retrotransposons, and evolution, in Telomerases: Chemistry, Biology, and Clinical Applications (Lue, N. F., and Autexier, C., eds.) John Wiley & Sons, Inc., Hoboken, NJ, pp. 265-299, doi: 10.1002/9781118268667.ch11.
  62. Lue, N. F., and Autexier, C. (2006) The structure and function of telomerase reverse transcriptase, Annu. Rev. Biochem., 75, 493-517, doi: 10.1146/annurev.biochem.75.103004.142412.
  63. Geer, L. Y., Domrachev, M., Lipman, D. J., and Bryant, S. H. (2002) CDART: protein homology by domain architecture, Genome Res., 12, 1619-1623, doi: 10.1101/gr.278202.
  64. Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., and Geer, L. Y. (2015) CDD: NCBI's conserved domain database, Nucleic Acids Res., 43, D222-D226, doi: 10.1093/nar/gku1221.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies