ATP IN MITOCHONDRIA: QUANTITATIVE MEASUREMENT, REGULATION, AND PHYSIOLOGICAL ROLE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Oxidative phosphorylation in mitochondria is the main source of ATP in most eukaryotic cells. Concentrations of ATP, ADP, and AMP affect numerous cellular processes, including macromolecule biosynthesis, cell division, motor protein activity, ion homeostasis, and metabolic regulation. Variations in ATP levels also influence concentration of free Mg2+, thereby extending the range of affected reactions. In the cytosol, adenine nucleotide concentrations are relatively constant and typically are around 5 mM ATP, 0.5 mM ADP, and 0.05 mM AMP. These concentrations are mutually constrained by adenylate kinases operating in the cytosol and intermembrane space and are further linked to mitochondrial ATP and ADP pools via the adenine nucleotide translocator. Quantitative data on absolute adenine nucleotide concentrations in the mitochondrial matrix are limited. Total adenine nucleotide concentration lies in the millimolar range, but the matrix ATP/ADP ratio is consistently lower than the cytosolic ratio. Estimates of nucleotide fractions show substantial variability (ATP 20–75%, ADP 20–70%, AMP 3–60%), depending on the organism and experimental conditions. These observations suggest that the 'state 4' — inhibition of oxidative phosphorylation in the resting cells due to the low matrix ADP and elevated proton motive force that impedes respiratory chain activity — is highly unlikely in vivo. In this review, we discuss proteins regulating ATP levels in mitochondria and cytosol, consider experimental estimates of adenine nucleotide concentrations across a range of biological systems, and examine the methods used for their quantification, with particular emphasis on the genetically encoded fluorescent ATP sensors such as ATeam, QUEEN, and MaLion.

About the authors

A. S Lapashina

Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics; Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology

Moscow, Russia; Moscow, Russia

D. O Tretyakov

Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics; Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology

Moscow, Russia; Moscow, Russia

B. A Feniouk

Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics; Lomonosov Moscow State University, A. N. Belozersky Institute of Physico-Chemical Biology

Email: feniouk@belozersky.msu.ru
Moscow, Russia; Moscow, Russia

References

  1. Zheng, W., Chai, P., Zhu, J., and Zhang, K. (2024) High-resolution in situ structures of mammalian respiratory supercomplexes, Nature, 631, 232-239, https://doi.org/10.1038/s41586-024-07488-9.
  2. Burgess, D. R. (2004) NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows, National Institute of Standards and Technology [Internet], https://doi.org/10.18434/M32154.
  3. Maeshima, K., Matsuda, T., Shindo, Y., Imamura, H., Tamura, S., Imai, R., Kawakami, S., Nagashima, R., Soga, T., Noji, H., Oka, K., and Nagai, T. (2018) A transient rise in free Mg2+ ions released from ATP-Mg hydrolysis contributes to mitotic chromosome condensation, Curr. Biol., 28, 444-451.e6, https://doi.org/10.1016/j.cub.2017.12.035.
  4. Babot, M., Birch, A., Labarbuta, P., and Galkin, A. (2014) Characterisation of the active/de-active transition of mitochondrial complex I, Biochim. Biophys. Acta, 1837, 1083-1092, https://doi.org/10.1016/j.bbabio.2014.02.018.
  5. Zubareva, V. M., Lapashina, A. S., Shugaeva, T. E., Litvin, A. V., and Feniouk, B. A. (2020) Rotary ion-translocating ATPases/ATP synthases: diversity, similarities, and differences, Biochemistry (Moscow), 85, 1613-1630, https://doi.org/10.1134/S0006297920120135.
  6. Klingenberg, M. (2008) The ADP and ATP transport in mitochondria and its carrier, Biochim. Biophys. Acta, 1778, 1978-2021, https://doi.org/10.1016/j.bbamem.2008.04.011.
  7. Penin, F., Deléage, G., Godinot, C., and Gautheron, D. C. (1986) Efficient reconstitution of mitochondrial energy-transfer reactions from depleted membranes and F1-ATPase as a function of the amount of bound oligomycin sensitivity-conferring protein (OSCP), Biochim. Biophys. Acta, 852, 55-67, https://doi.org/10.1016/0005-2728(86)90056-3.
  8. Matsuno-Yagi, A., and Hatefi, Y. (1988) Estimation of the turnover number of bovine heart F0F1 complexes for ATP synthesis, Biochemistry, 27, 335-340, https://doi.org/10.1021/bi00401a050.
  9. Morgenstern, M., Peikert, C. D., Lübbert, P., Suppanz, I., Klemm, C., Alka, O., Steiert, C., Naumenko, N., Schendzielorz, A., Melchionda, L., Mühlhäuser, W. W. D., Knapp, B., Busch, J. D., Stiller, S. B., Dannenmaier, S., Lindau, C., Licheva, M., Eickhorst, C., Galbusera, R., Zerbes, R. M., Ryan, M. T., Kraft, C., Kozjak-Pavlovic, V., Drepper, F., Dennerlein, S., Oeljeklaus, S., Pfanner, N., Wiedemann, N., and Warscheid, B. (2021) Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context, Cell Metab., 33, 2464-2483.e18, https://doi.org/10.1016/j.cmet.2021.11.001.
  10. Lapashina, A. S., and Feniouk, B. A. (2018) ADP-Inhibition of H+-FOF1-ATP Synthase, Biochemistry (Moscow), 83, 1141-1160, https://doi.org/10.1134/S0006297918100012.
  11. Campanella, M., Casswell, E., Chong, S., Farah, Z., Wieckowski, M. R., Abramov, A. Y., Tinker, A., and Duchen, M. R. (2008) Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1, Cell Metab., 8, 13-25, https://doi.org/10.1016/j.cmet.2008.06.001.
  12. Galkina, K. V., Zubareva, V. M., Kashko, N. D., Lapashina, A. S., Markova, O. V., Feniouk, B. A., and Knorre, D. A. (2022) Heterogeneity of starved yeast cells in IF1 levels suggests the role of this protein in vivo, Front. Microbiol., 13, 816622, https://doi.org/10.3389/fmicb.2022.816622.
  13. Lapashina, A. S., Kashko, N. D., Zubareva, V. M., Galkina, K. V., Markova, O. V., Knorre, D. A., and Feniouk, B. A. (2022) Attenuated ADP-inhibition of FOF1 ATPase mitigates manifestations of mitochondrial dysfunction in yeast, Biochim. Biophys. Acta, 1863, 148544, https://doi.org/10.1016/j.bbabio.2022.148544.
  14. Pfaff, E., and Klingenberg, M. (1968) Adenine nucleotide translocation of mitochondria. 1. Specificity and control, Eur. J. Biochem., 6, 66-79, https://doi.org/10.1111/j.1432-1033.1968.tb00420.x.
  15. Winkler, H. H., Bygrave, F. L., and Lehninger, A. L. (1968) Characterization of the atractyloside-sensitive adenine nucleotide transport system in rat liver mitochondria, J. Biol. Chem., 243, 20-28, https://doi.org/10.1016/s0021-9258(18)99320-8.
  16. Matsuno-Yagi, A., and Hatefi, Y. (1990) Studies on the mechanism of oxidative phosphorylation. Positive cooperativity in ATP synthesis, J. Biol. Chem., 265, 82-88, https://doi.org/10.1016/S0021-9258(19)40198-1.
  17. Panayiotou, C., Solaroli, N., and Karlsson, A. (2014) The many isoforms of human adenylate kinases, Int. J. Biochem. Cell Biol., 49, 75-83, https://doi.org/10.1016/j.biocel.2014.01.014.
  18. Fujisawa, K. (2023) Regulation of adenine nucleotide metabolism by adenylate kinase isozymes: physiological roles and diseases, Int. J. Mol. Sci., 24, 5561, https://doi.org/10.3390/ijms24065561.
  19. Miyoshi, K., Akazawa, Y., Horiguchi, T., and Noma, T. (2009) Localization of adenylate kinase 4 in mouse tissues, Acta Histochem. Cytochem., 42, 55-64, https://doi.org/10.1267/ahc.08012.
  20. Liu, R., Ström, A.-L., Zhai, J., Gal, J., Bao, S., Gong, W., and Zhu, H. (2009) Enzymatically inactive adenylate kinase 4 interacts with mitochondrial ADP/ATP translocase, Int. J. Biochem. Cell Biol., 41, 1371-1380, https://doi.org/10.1016/j.biocel.2008.12.002.
  21. Panayiotou, C., Solaroli, N., Johansson, M., and Karlsson, A. (2010) Evidence of an intact N-terminal translocation sequence of human mitochondrial adenylate kinase 4, Int. J. Biochem. Cell Biol., 42, 62-69, https://doi.org/10.1016/j.biocel.2009.09.007.
  22. Wilson, D.E., Povey, S., and Harris, H. (1976) Adenylate kinases in man: evidence for a third locus, Ann. Hum. Genet., 39, 305-313, https://doi.org/10.1111/j.1469-1809.1976.tb00134.x.
  23. Nam, K., Thodika, A. R. A., Tischlik, S., Phoeurk, C., Nagy, T. M., Schierholz, L., Ådén, J., Rogne, P., Drescher, M., Sauer-Eriksson, A. E., and Wolf-Watz, M. (2024) Magnesium induced structural reorganization in the active site of adenylate kinase, Sci. Adv., 10, eado5504, https://doi.org/10.1126/sciadv.ado5504.
  24. Blair, J. M. (1970) Magnesium, potassium, and the adenylate kinase equilibrium. Magnesium as a feedback signal from the adenine nucleotide pool, Eur. J. Biochem., 13, 384-390, https://doi.org/10.1111/j.1432-1033.1970.tb00940.x.
  25. Gellerich, F. N. (1992) The role of adenylate kinase in dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space, FEBS Lett., 297, 55-58, https://doi.org/10.1016/0014-5793(92)80326-c.
  26. Tomasselli, A. G., Schirmer, R. H., and Noda, L. H. (1979) Mitochondrial GTP-AMP phosphotransferase. 1. Purification and properties, Eur. J. Biochem., 93, 257-262, https://doi.org/10.1111/j.1432-1033.1979.tb12818.x.
  27. Seifert, E. L., Ligeti, E., Mayr, J. A., Sondheimer, N., and Hajnóczky, G. (2015) The mitochondrial phosphate carrier: role in oxidative metabolism, calcium handling and mitochondrial disease, Biochem. Biophys. Res. Commun., 464, 369-375, https://doi.org/10.1016/j.bbrc.2015.06.031.
  28. Küster, U., Bohnensack, R., and Kunz, W. (1976) Control of oxidative phosphorylation by the extra-mitochondrial ATP/ADP ratio, Biochim. Biophys. Acta, 440, 391-402, https://doi.org/10.1016/0005-2728(76)90073-6.
  29. Davis, E. J., and Davis-van Thienen, W. I. (1978) Control of mitochondrial metabolism by the ATP/ADP ratio, Biochem. Biophys. Res. Commun., 83, 1260-1266, https://doi.org/10.1016/0006-291x(78)91357-8.
  30. Lemasters, J. J., and Sowers, A. E. (1979) Phosphate dependence and atractyloside inhibition of mitochondrial oxidative phosphorylation. The ADP-ATP carrier is rate-limiting, J. Biol. Chem., 254, 1248-1251, https://doi.org/10.1016/s0021-9258(17)34194-7.
  31. Slater, E. C., Rosing, J., and Mol, A. (1973) The phosphorylation potential generated by respiring mitochondria, Biochim. Biophys. Acta, 292, 534-553, https://doi.org/10.1016/0005-2728(73)90003-0.
  32. Groen, A. K., Wanders, R. J., Westerhoff, H. V., van der Meer, R., and Tager, J. M. (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration, J. Biol. Chem., 257, 2754-2757, https://doi.org/10.1016/s0021-9258(19)81026-8.
  33. Fiermonte, G., De Leonardis, F., Todisco, S., Palmieri, L., Lasorsa, F. M., and Palmieri, F. (2004) Identification of the mitochondrial ATP-Mg/Pi transporter, J. Biol. Chem., 279, 30722-30730, https://doi.org/10.1074/jbc.M400445200.
  34. Hardie, D. G., and Hawley, S. A. (2001) AMP-activated protein kinase: the energy charge hypothesis revisited, Bioessays, 23, 1112-1119, https://doi.org/10.1002/bies.10009.
  35. Ramaiah, A., Hathaway, J. A., and Atkinson, D. E. (1964) Adenylate as a metabolic regulator. Effect on yeast phosphofructokinase kinetics, J. Biol. Chem., 239, 3619-3622.
  36. Atkinson, D. E. (1968) Energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry, 7, 4030-4034, https://doi.org/10.1021/bi00851a033.
  37. Hardie, D. G., Carling, D., and Sim, A. T. R. (1989) The AMP-activated protein kinase: a multisubstrate regulator of lipid metabolism, Trends Biochem. Sci., 14, 20-23, https://doi.org/10.1016/0968-0004(89)90084-4.
  38. Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell Biol., 13, 251-262, https://doi.org/10.1038/nrm3311.
  39. Park, J. O., Rubin, S. A., Xu, Y.-F., Amador-Noguez, D., Fan, J., Shlomi, T., and Rabinowitz, J. D. (2016) Metabolite concentrations, fluxes and free energies imply efficient enzyme usage, Nat. Chem. Biol., 12, 482-489, https://doi.org/10.1038/nchembio.2077.
  40. Gauthier, S., Coulpier, F., Jourdren, L., Merle, M., Beck, S., Konrad, M., Daignan-Fornier, B., and Pinson, B. (2008) Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations, Mol. Microbiol., 68, 1583-1594, https://doi.org/10.1111/j.1365-2958.2008.06261.x.
  41. Traut, T. W. (1994) Physiological concentrations of purines and pyrimidines, Mol. Cell Biochem., 140, 1-22, https://doi.org/10.1007/BF00928361.
  42. Johnson, J. D., Mehus, J. G., Tews, K., Milavetz, B. I., and Lambeth, D. O. (1998) Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes, J. Biol. Chem., 273, 27580-27586, https://doi.org/10.1074/jbc.273.42.27580.
  43. Stark, R., Pasquel, F., Turcu, A., Pongratz, R. L., Roden, M., Cline, G. W., Shulman, G. I., and Kibbey, R. G. (2009) Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion, J. Biol. Chem., 284, 26578-26590, https://doi.org/10.1074/jbc.M109.011775.
  44. Milon, L., Meyer, P., Chiadmi, M., Munier, A., Johansson, M., Karlsson, A., Lascu, I., Capeau, J., Janin, J., and Lacombe, M. L. (2000) The human nm23-H4 gene product is a mitochondrial nucleoside diphosphate kinase, J. Biol. Chem., 275, 14264-14272, https://doi.org/10.1074/jbc.275.19.14264.
  45. Tokarska-Schlattner, M., Boissan, M., Munier, A., Borot, C., Mailleau, C., Speer, O., Schlattner, U., and Lacombe, M.-L. (2008) The nucleoside diphosphate kinase D (NM23-H4) binds the inner mitochondrial membrane with high affinity to cardiolipin and couples nucleotide transfer with respiration, J. Biol. Chem., 283, 26198-26207, https://doi.org/10.1074/jbc.M803132200.
  46. Boissan, M., Dabernat, S., Peuchant, E., Schlattner, U., Lascu, I., and Lacombe, M.-L. (2009) The mammalian Nm23/NDPK family: from metastasis control to cilia movement, Mol. Cell Biochem., 329, 51-62, https://doi.org/10.1007/s11010-009-0120-7.
  47. Muhonen, W. W., and Lambeth, D. O. (1995) The compartmentation of nucleoside diphosphate kinase in mitochondria, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 110, 211-223, https://doi.org/10.1016/0305-0491(94)00123-c.
  48. Lacombe, M.-L., Tokarska-Schlattner, M., Boissan, M., and Schlattner, U. (2018) The mitochondrial nucleoside diphosphate kinase (NDPK-D/NME4), a moonlighting protein for cell homeostasis, Lab Invest, 98, 582-588, https://doi.org/10.1038/s41374-017-0004-5.
  49. Gordon, D. M., Lyver, E. R., Lesuisse, E., Dancis, A., and Pain, D. (2006) GTP in the mitochondrial matrix plays a crucial role in organellar iron homoeostasis, Biochem. J., 400, 163-168, https://doi.org/10.1042/BJ20060904.
  50. Mansurova, S. E., Drobyshev, V. I., and Kulaev, I. S. (1972) Nucleotides of beef heart mitochondria and submitochondrial particles, J. Bioenerg., 3, 499-507, https://doi.org/10.1007/BF01539058.
  51. Brierley, G., and O’Brien, R. L. (1965) Compartmentation of heart mitochondria, J. Biol. Chem., 240, 4532-4539, https://doi.org/10.1016/s0021-9258(18)97095-x.
  52. Meisner, H., and Klingenberg, M. (1968) Efflux of adenine nucleotides from rat liver mitochondria, J. Biol. Chem., 243, 3631-3639, https://doi.org/10.1016/S0021-9258(19)34186-9.
  53. Haynes, R. C., Jr, Picking, R. A., and Zaks, W. J. (1986) Control of mitochondrial content of adenine nucleotides by submicromolar calcium concentrations and its relationship to hormonal effects, J. Biol. Chem., 261, 16121-16125, https://doi.org/10.1016/s0021-9258(18)66686-4.
  54. Gout, E., Rébeillé, F., Douce, R., and Bligny, R. (2014) Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration, Proc. Natl. Acad. Sci. USA, 111, E4560-E4567, https://doi.org/10.1073/pnas.1406251111.
  55. Zuurendonk, P. F., and Tager, J. M. (1974) Rapid separation of particulate components and soluble cytoplasm of isolated rat-liver cells, Biochim. Biophys. Acta, 333, 393-399, https://doi.org/10.1016/0005-2728(74)90022-x.
  56. Akerboom, T. P. M., Bookelman, H., Zuurendonk, P. F., Meer, R., and Tager, J. M. (1978) Intramitochondrial and extramitochondrial concentrations of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fasted rats, Eur. J. Biochem., 84, 413-420, https://doi.org/10.1111/j.1432-1033.1978.tb12182.x.
  57. Tischler, M. E., Hecht, P., and Williamson, J. R. (1977) Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption, Arch. Biochem. Biophys., 181, 278-293, https://doi.org/10.1016/0003-9861(77)90506-9.
  58. Elbers, R., Heldt, H. W., Schmucker, P., Soboll, S., and Wiese, H. (1974) Measurement of the ATP/ADP ratio in mitochondria and in the extramitochondrial compartment by fractionation of freeze-stopped liver tissue in non-aqueous media, Hoppe Seylers Z. Physiol. Chem., 355, 378-393, https://doi.org/10.1515/bchm2.1974.355.1.378.
  59. Sutton, R., and Pollak, J. K. (1978) The increasing adenine nucleotide concentration and the maturation of rat liver mitochondria during neonatal development, Differentiation, 12, 15-21, https://doi.org/10.1111/j.1432-0436.1979.tb00985.x.
  60. Schwenke, W. D., Soboll, S., Seitz, H. J., and Sies, H. (1981) Mitochondrial and cytosolic ATP/ADP ratios in rat liver in vivo, Biochem J, 200, 405-408, https://doi.org/10.1042/bj2000405.
  61. Soboll, S., Akerboom, T. P., Schwenke, W. D., Haase, R., and Sies, H. (1980) Mitochondrial and cytosolic ATP/ADP ratios in isolated hepatocytes. A comparison of the digitonin method and the non-aqueous fractionation procedure, Biochem. J., 192, 951-954, https://doi.org/10.1042/bj1920951.
  62. Chen, W. W., Freinkman, E., Wang, T., Birsoy, K., and Sabatini, D. M. (2016) Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism, Cell, 166, 1324-1337.e11, https://doi.org/10.1016/j.cell.2016.07.040.
  63. Soboll, S., and Bünger, R. (1981) Compartmentation of adenine nucleotides in the isolated working guinea pig heart stimulated by noradrenaline, Hoppe Seylers Z. Physiol. Chem., 362, 125-132, https://doi.org/10.1515/bchm2.1981.362.1.125.
  64. Soboll, S., Scholz, R., and Heldt, H. W. (1978) Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver, Eur. J. Biochem., 87, 377-390, https://doi.org/10.1111/j.1432-1033.1978.tb12387.x.
  65. Pfaller, W., Guder, W. G., Gstraunthaler, G., Kotanko, P., Jehart, I., and Pürschel, S. (1984) Compartmentation of ATP within renal proximal tubular cells, Biochim. Biophys. Acta, 805, 152-157, https://doi.org/10.1016/0167-4889(84)90162-9.
  66. Yoshida, T., Alfaqaan, S., Sasaoka, N., and Imamura, H. (2017) Application of FRET-based biosensor “ATeam” for visualization of ATP levels in the mitochondrial matrix of living mammalian cells, Methods Mol. Biol., 1567, 231-243, https://doi.org/10.1007/978-1-4939-6824-4_14.
  67. Kioka, H., Kato, H., Fujikawa, M., Tsukamoto, O., Suzuki, T., Imamura, H., Nakano, A., Higo, S., Yamazaki, S., Matsuzaki, T., Takafuji, K., Asanuma, H., Asakura, M., Minamino, T., Shintani, Y., Yoshida, M., Noji, H., Kitakaze, M., Komuro, I., Asano, Y., and Takashima, S. (2014) Evaluation of intramitochondrial ATP levels identifies G0/G1 switch gene 2 as a positive regulator of oxidative phosphorylation, Proc. Natl. Acad. Sci. USA, 111, 273-278, https://doi.org/10.1073/pnas.1318547111.
  68. Morciano, G., Imamura, H., Patergnani, S., Pedriali, G., Giorgi, C., and Pinton, P. (2020) Measurement of ATP concentrations in mitochondria of living cells using luminescence and fluorescence approaches, Methods Cell Biol., 155, 199-219, https://doi.org/10.1016/bs.mcb.2019.10.007.
  69. Imamura, H., Nhat, K. P. H., Togawa, H., Saito, K., Iino, R., Kato-Yamada, Y., Nagai, T., and Noji, H. (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators, Proc. Natl. Acad. Sci. USA, 106, 15651-15656, https://doi.org/10.1073/pnas.0904764106.
  70. Gnaiger, E., Aasander Frostner, E., Abdul Karim, N., Abdel-Rahman, E. A., Abumrad, N. A., Acuna-Castroviejo, D., Adiele, R. C., et al. (2020) Mitochondrial physiology, Bioenerg. Commun., 2020.1, https://doi.org/10.26124/bec:2020-0001.v1.
  71. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15-18, https://doi.org/10.1016/s0014-5793(97)01159-9.
  72. Skulachev, V. P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Q. Rev. Biophys., 29, 169-202, https://doi.org/10.1017/s0033583500005795.
  73. Depaoli, M. R., Karsten, F., Madreiter-Sokolowski, C. T., Klec, C., Gottschalk, B., Bischof, H., Eroglu, E., Waldeck-­Weiermair, M., Simmen, T., Graier, W. F., and Malli, R. (2018) Real-time imaging of mitochondrial ATP dynamics reveals the metabolic setting of single cells, Cell Rep., 25, 501-512.e3, https://doi.org/10.1016/j.celrep.2018.09.027.
  74. Suzuki, R., Hotta, K., and Oka, K. (2018) Transitional correlation between inner-membrane potential and ATP levels of neuronal mitochondria, Sci. Rep., 8, 2993, https://doi.org/10.1038/s41598-018-21109-2.
  75. Choi, J., Matoba, N., Setoyama, D., Watanabe, D., Ohnishi, Y., Yasui, R., Kitai, Y., Oomachi, A., Kotobuki, Y., Nishiya, Y., Pieper, M. P., Imamura, H., Yanagita, M., and Yamamoto, M. (2023) The SGLT2 inhibitor empagliflozin improves cardiac energy status via mitochondrial ATP production in diabetic mice, Commun. Biol., 6, https://doi.org/10.1038/s42003-023-04663-y.
  76. Botman, D., van Heerden, J. H., and Teusink, B. (2020) An improved ATP FRET sensor for yeast shows heterogeneity during nutrient transitions, ACS Sens., 5, 814-822, https://doi.org/10.1021/acssensors.9b02475.
  77. Gostimskaya, I. S., Grivennikova, V. G., Zharova, T. V., Bakeeva, L. E., and Vinogradov, A. D. (2003) In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria, Anal. Biochem., 313, 46-52, https://doi.org/10.1016/s0003-2697(02)00534-1.
  78. Лапашина А.С., Галкина К.В., Маркова О.В., Кнорре Д.А., Фенюк Б.А. (2023) Наблюдения за уровнем АТФ в митохондриях и целых клетках дрожжей при помощи флуоресцентных зондов, Рецепторы и внутриклеточная сигнализация. Сборник статей, стр. 352-357.
  79. Yaginuma, H., Kawai, S., Tabata, K. V., Tomiyama, K., Kakizuka, A., Komatsuzaki, T., Noji, H., and Imamura, H. (2014) Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging, Sci. Rep., 4, 6522, https://doi.org/10.1038/srep06522.
  80. Arai, S., Kriszt, R., Harada, K., Looi, L.-S., Matsuda, S., Wongso, D., Suo, S., Ishiura, S., Tseng, Y.-H., Raghunath, M., Ito, T., Tsuboi, T., and Kitaguchi, T. (2018) RGB-color intensiometric indicators to visualize spatiotemporal dynamics of ATP in single cells, Angew. Chem. Int. Ed. Engl., 57, 10873-10878, https://doi.org/10.1002/anie.201804304.
  81. Takaine, M., Ueno, M., Kitamura, K., Imamura, H., and Yoshida, S. (2019) Reliable imaging of ATP in living budding and fission yeast, J. Cell Sci., 132, https://doi.org/10.1242/jcs.230649.
  82. Sawai, A., Taniguchi, T., Noguchi, K., Seike, T., Okahashi, N., Takaine, M., and Matsuda, F. (2025) ATP supply from cytosol to mitochondria is an additional role of aerobic glycolysis to prevent programmed cell death by maintenance of mitochondrial membrane potential, Metabolites, 15, 461, https://doi.org/10.3390/metabo15070461.
  83. Tsuno, S., Harada, K., Horikoshi, M., Mita, M., Kitaguchi, T., Hirai, M. Y., Matsumoto, M., and Tsuboi, T. (2024) Mitochondrial ATP concentration decreases immediately after glucose administration to glucose-deprived hepatocytes, FEBS Open Bio, 14, 79-95, https://doi.org/10.1002/2211-5463.13744.
  84. Berg, J., Hung, Y. P., and Yellen, G. (2009) A genetically encoded fluorescent reporter of ATP:ADP ratio, Nat. Methods, 6, 161-166, https://doi.org/10.1038/nmeth.1288.
  85. Tantama, M., Martínez-François, J. R., Mongeon, R., and Yellen, G. (2013) Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio, Nat. Commun., 4, 2550, https://doi.org/10.1038/ncomms3550.
  86. Zhang, M., Yang, B., Zhang, J., Song, Y., Wang, W., Li, N., Wang, Y., Li, W., and Wang, J. (2022) Monitoring the dynamic regulation of the mitochondrial GTP-to-GDP ratio with a genetically encoded fluorescent biosensor, Angew. Chem. Int. Ed. Engl., 61, e202201266, https://doi.org/10.1002/anie.202201266.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).