CURRENT CHALLENGES AND FUTURE DIRECTIONS IN MITOCHONDRIAL POTASSIUM TRANSPORT RESEARCH
- Authors: Nesterov S.V1, Smirnova E.G2, Yaguzhinsky L.S2
-
Affiliations:
- National Research Center "Kurchatov Institute"
- Belozersky Research Institute for Physico Chemical Biology, Lomonosov Moscow State University
- Issue: Vol 90, No 12 (2025)
- Pages: 1997—2011
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/376120
- DOI: https://doi.org/10.7868/S3034529425120067
- ID: 376120
Cite item
Abstract
About the authors
S. V Nesterov
National Research Center "Kurchatov Institute"
Email: semen.v.nesterov@phystech.edu
Moscow, Russia
E. G Smirnova
Belozersky Research Institute for Physico Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
L. S Yaguzhinsky
Belozersky Research Institute for Physico Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
References
- Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature, 191, 144-148, https://doi.org/10.1038/191144a0.
- Skulachev, V. P., Sharaf, A. A., and Liberman, E. A. (1967) Proton conductors in the respirator chain and artificial membranes, Nature, 216, 718-719, https://doi.org/10.1038/216718a0.
- Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076-1078, https://doi.org/10.1038/2221076a0.
- Liberman, E. A., and Skulachev, V. P. (1970) Conversion of biomembrane-produced energy into electric form. IV. General discussion, Biochim. Biophys. Acta, 216, 30-42, https://doi.org/10.1016/0005-2728(70)90156-8.
- Garlid, K. D., and Paucek, P. (2003) Mitochondrial potassium transport: the K+ cycle, Biochim Biophys Acta, 1606, 23-41, https://doi.org/10.1016/S0005-2728(03)00108-7.
- Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev., 41, 445-501, https://doi.org/10.1111/j.1469-185X.1966.tb01501.x.
- Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, H. B., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2022) ATP synthase K+and H+-fluxes drive ATP synthesis and enable mitochondrial K+-“uniporter” function: II. Ion and ATP synthase flux regulation, Function, 3, zqac001, https://doi.org/10.1093/function/zqac001.
- Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, H. B., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2022) ATP synthase K+and H+-fluxes drive ATP synthesis and enable mitochondrial K+-“uniporter” function: I. Characterization of ion fluxes, Function, 3, zqab065, https://doi.org/10.1093/function/zqab065.
- Krasinskaya, I. P., Marshansky, V. N., Dragunova, S. F., and Yaguzhinsky, L. S. (1984) Relationships of respiratory chain and ATP-synthetase in energized mitochondria, FEBS Lett., 167, 176-180, https://doi.org/10.1016/0014-5793(84)80856-X.
- Byvshev, I. M., Murugova, T. N., Ivankov, A. I., Kuklin, A. I., Vangeli, I. M., Teplova, V. V., Popov, V. I., Nesterov, S. V., and Yaguzhinskiy, L. S. (2018) The hypoxia signal as a potential inducer of supercomplex formation in the oxidative phosphorylation system of heart mitochondria, Biophysics, 63, 549-560, https://doi.org/10.1134/S0006350918040048.
- Yaguzhinsky, L. S., Yurkov, V. I., and Krasinskaya, I. P. (2006) On the localized coupling of respiration and phosphorylation in mitochondria, Biochim. Biophys. Acta, 1757, 408-414, https://doi.org/10.1016/j.bbabio.2006.04.001.
- Krasinskaia, I. P., Litvinov, I. S., Zakharov, S. D., Bakeeva, L. E., and Iaguzhinskiĭ, L. S. (1989) Two qualitatively different structuro-functional states of mitochondria, Biochemistry (Moscow), 54, 1550-1556.
- Yaguzhinsky, L. S., Skorobogatova, Y. A., and Nesterov, S. V. (2017) Functionally significant low-temperature structural alterations in mitochondrial membranes of homoiothermic animals, Biophysics, 62, 415-420, https://doi.org/10.1134/S0006350917030241.
- Nesterov, S., Chesnokov, Y., Kamyshinsky, R., Panteleeva, A., Lyamzaev, K., Vasilov, R., and Yaguzhinsky, L. (2021) Ordered clusters of the complete oxidative phosphorylation system in cardiac mitochondria, Int. J. Mol. Sci., 22, 1462, https://doi.org/10.3390/ijms22031462.
- Nesterov, S. V., Plokhikh, K. S., Chesnokov, Y. M., Mustafin, D. A., Goleva, T. N., Rogov, A. G., Vasilov, R. G., and Yaguzhinsky, L. S. (2024) Safari with an electron gun: visualization of protein and membrane interactions in mitochondria in natural environment, Biochemistry (Moscow), 89, 257-268, https://doi.org/10.1134/S0006297924020068.
- Nesterov, S. V. (2025) Membrane curvature controls the efficiency of oxidative phosphorylation system, Biochem. Mosc. Suppl. Ser. Membr. Cell Biol., 19, 151-156, https://doi.org/10.1134/S1990747825700059.
- Bulthuis, E. P., Dieteren, C. E. J., Bergmans, J., Berkhout, J., Wagenaars, J. A., van de Westerlo, E. M. A., Podhumljak, E., Hink, M. A., Hesp, L. F. B., Rosa, H. S., Malik, A. N., Lindert, M. K.-T., Willems, P. H. G. M., Gardeniers, H. J. G. E., den Otter, W. K., Adjobo-Hermans, M. J. W., and Koopman, W. J. H. (2023) Stress-dependent macromolecular crowding in the mitochondrial matrix, EMBO J., 42, e108533, https://doi.org/10.15252/embj.2021108533.
- Nesterov, S. V., Yaguzhinsky, L. S., Podoprigora, G. I., and Nartsissov, Ya. R. (2020) Amino acids as regulators of cell metabolism, Biochemistry (Moscow), 85, 393-408, https://doi.org/10.1134/S000629792004001X.
- Parry, B. R., Surovtsev, I. V., Cabeen, M. T., O’Hern, C. S., Dufresne, E. R., Jacobsand Wagner, C. (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity, Cell, 156, 183-194, https://doi.org/10.1016/j.cell.2013.11.028.
- Mitchell, P., and Moyle, J. (1969) Translocation of some anions cations and acids in rat liver mitochondria, Eur. J. Biochem., 9, 149-155, https://doi.org/10.1111/j.1432-1033.1969.tb00588.x.
- Garlid, K. D. (1978) Unmasking the mitochondrial KH exchanger: swelling-induced K+-loss, Biochem. Biophys. Res. Commun., 83, 1450-1455, https://doi.org/10.1016/0006-291X(78)91383-9.
- Nakashima, R. A., and Garlid, K. D. (1982) Quinine inhibition of Na+ and K+ transport provides evidence for two cation/H+ exchangers in rat liver mitochondria, J. Biol. Chem., 257, 9252-9254, https://doi.org/10.1016/S0021-9258(18)34058-4.
- Martin, W. H., DiResta, D. J., and Garlid, K. D. (1986) Kinetics of inhibition and binding of dicyclohexylcarbodiimide to the 82,000-dalton mitochondrial K+/H+ antiporter, J. Biol. Chem., 261, 12300-12305, https://doi.org/10.1016/S0021-9258(18)67238-2.
- Zotova, L., Aleschko, M., Sponder, G., Baumgartner, R., Reipert, S., Prinz, M., Schweyen, R. J., and Nowikovsky, K. (2010) Novel components of an active mitochondrial K+/H+ exchange, J. Biol. Chem., 285, 14399-14414, https://doi.org/10.1074/jbc.M109.059956.
- Tsujii, M., Tanudjaja, E., Zhang, H., Shimizukawa, H., Konishi, A., Furuta, T., Ishimaru, Y., and Uozumi, N. (2024) Dissecting structure and function of the monovalent cation/H+ antiporters Mdm38 and Ylh47 in Saccharomyces cerevisiae, J. Bacteriol., 206, e00182-24, https://doi.org/10.1128/jb.00182-24.
- Shao, J., Fu, Z., Ji, Y., Guan, X., Guo, S., Ding, Z., Yang, X., Cong, Y., and Shen, Y. (2016) Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) forms a Ca2+/H+ antiporter., Sci. Rep., 6, 34174, https://doi.org/10.1038/srep34174.
- Dimmer, K. S., Navoni, F., Casarin, A., Trevisson, E., Endele, S., Winterpacht, A., Salviati, L., and Scorrano, L. (2008) LETM1, deleted in Wolf-Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability, Hum. Mol. Genet., 17, 201-214, https://doi.org/10.1093/hmg/ddm297.
- Nakamura, S., Matsui, A., Akabane, S., Tamura, Y., Hatano, A., Miyano, Y., Omote, H., Kajikawa, M., Maenaka, K., Moriyama, Y., Endo, T., and Oka, T. (2020) The mitochondrial inner membrane protein LETM1 modulates cristae organization through its LETM domain, Commun. Biol., 3, 99, https://doi.org/10.1038/s42003-020-0832-5.
- Austin, S., Tavakoli, M., Pfeiffer, C., Seifert, J., Mattarei, A., De Stefani, D., Zoratti, M., and Nowikovsky, K. (2017) LETM1-mediated K+ and Na+ homeostasis regulates mitochondrial Ca2+ efflux, Front. Physiol., 8, 839, https://doi.org/10.3389/fphys.2017.00839.
- Mohammed, S. E. M., and Nowikovsky, K. (2024) The mysteries of LETM1 pleiotropy, Pharmacol. Res., 210, 107485, https://doi.org/10.1016/j.phrs.2024.107485.
- Lin, Q.-T., and Stathopulos, P. B. (2019) Molecular mechanisms of leucine zipper EF-hand containing transmembrane protein-1 function in health and disease, Int. J. Mol. Sci., 20, 286, https://doi.org/10.3390/ijms20020286.
- Okamura, K., Matsushita, S., Kato, Y., Watanabe, H., Matsui, A., Oka, T., and Matsuura, T. (2019) In vitro synthesis of the human calcium transporter Letm1 within cell-sized liposomes and investigation of its lipid dependency, J. Biosci. Bioeng., 127, 544-548, https://doi.org/10.1016/j.jbiosc.2018.11.003.
- Tamai, S., Iida, H., Yokota, S., Sayano, T., Kiguchiya, S., Ishihara, N., Hayashi, J.-I., Mihara, K., and Oka, T. (2008) Characterization of the mitochondrial protein LETM1, which maintains the mitochondrial tubular shapes and interacts with the AAA-ATPase BCS1L, J. Cell Sci., 121, 2588-2600, https://doi.org/10.1242/jcs.026625.
- Austin, S., Mekis, R., Mohammed, S. E. M., Scalise, M., Wang, W.-A., Galluccio, M., Pfeiffer, C., Borovec, T., Parapatics, K., Vitko, D., Dinhopl, N., Demaurex, N., Bennett, K. L., Indiveri, C., and Nowikovsky, K. (2022) TMBIM5 is the Ca2+/H+ antiporter of mammalian mitochondria, EMBO Rep., 23, e54978, https://doi.org/10.15252/embr.202254978.
- Anzai, K., Takano, C., Tanaka, K., and Kirino, Y. (1994) Asymmetrical lipid charge changes the subconducting state of the potassium channel from sarcoplasmic reticulum, Biochem. Biophys. Res. Commun., 199, 1081-1087, https://doi.org/10.1006/bbrc.1994.1339.
- Krylova, I. B., Selina, E. N., Bulion, V. V., Rodionova, O. M., Evdokimova, N. R., Belosludtseva, N. V., Shigaeva, M. I., and Mironova, G. D. (2021) Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel, Sci. Rep., 11, 16999, https://doi.org/10.1038/s41598-021-96562-7.
- Mironova, G. D., Talanov, E. Y., Belosludtseva, N. V., Khrenov, M. O., Glushkova, O. V., Parfenyuk, S. B., Novoselova, T. V., Lunin, S. M., Novoselova, E. G., and Lemasters, J. J. (2018) The role of mitochondrial KATP channel in anti-inflammatory effects of uridine in endotoxemic mice, Arch. Biochem. Biophys., 654, 70-76, https://doi.org/10.1016/j.abb.2018.07.006.
- Uspalenko, N. I., Mosentsov, A. A., Khmil, N. V., Pavlik, L. L., Belosludtseva, N. V., Khunderyakova, N. V., Shigaeva, M. I., Medvedeva, V. P., Malkov, A. E., Kitchigina, V. F., and Mironova, G. D. (2023) Uridine as a regulator of functional and ultrastructural changes in the brain of rats in a model of 6-OHDA-induced Parkinson’s disease, Int. J. Mol. Sci., 24, 14304, https://doi.org/10.3390/ijms241814304.
- Inoue, I., Nagase, H., Kishi, K., and Higuti, T. (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature, 352, 244-247, https://doi.org/10.1038/352244a0.
- Garlid, K. D., and Halestrap, A. P. (2012) The mitochondrial KATP channel – fact or fiction? J. Mol. Cell Cardiol., 52, 578-583, https://doi.org/10.1016/j.yjmcc.2011.12.011.
- Mironova, G. D., Fedotcheva, N. I., Makarov, P. R., Pronevich, L. A., and Mironov, G. P. (1981) Protein from beef heart mitochondria inducing the potassium channel conductivity of bilayer lipid membrane [in Russian], Biophisics, 26, 451-457.
- Mironova, G. D., Skarga, Y. Yu., Grigoriev, S. M., Negoda, A. E., Kolomytkin, O. V., and Marinov, B. S. (1999) Reconstitution of the mitochondrial ATP-dependent potassium channel into bilayer lipid membrane, J. Bioenerg. Biomembr., 31, 159-163, https://doi.org/10.1023/A:1005408029549.
- Sun, H., and Feng, Z. (2013) Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia, Acta Pharmacol. Sin., 34, 24-32, https://doi.org/10.1038/aps.2012.138.
- Wojtovich, A. P., Urciuoli, W. R., Chatterjee, S., Fisher, A. B., Nehrke, K., and Brookes, P. S. (2013) Kir6.2 is not the mitochondrial KATP channel but is required for cardioprotection by ischemic preconditioning, Am. J. Physiol. Heart Circ. Physiol., 304, H1439-H1445, https://doi.org/10.1152/ajpheart.00972.2012.
- Foster, D. B., Ho, A. S., Rucker, J., Garlid, A. O., Chen, L., Sidor, A., Garlid, K. D., and O’Rourke, B. (2012) Mitochondrial ROMK channel is a molecular component of MitoKATP, Circ. Res., 111, 446-454, https://doi.org/10.1161/CIRCRESAHA.112.266445.
- Laskowski, M., Augustynek, B., Bednarczyk, P., Żochowska, M., Kalisz, J., O’Rourke, B., Szewczyk, A., and Kulawiak, B. (2019) Single-channel properties of the ROMK-pore-forming subunit of the mitochondrial ATP-sensitive potassium channel, Int. J. Mol. Sci., 20, 5323, https://doi.org/10.3390/ijms20215323.
- Papanicolaou, K. N., Ashok, D., Liu, T., Bauer, T. M., Sun, J., Li, Z., Da Costa, E., D’Orleans, C. C., Nathan, S., Lefer, D. J., Murphy, E., Paolocci, N., Foster, D. B., and O’Rourke, B. (2020) Global knockout of ROMK potassium channel worsens cardiac ischemia-reperfusion injury but cardiomyocyte-specific knockout does not: Implications for the identity of mitoKATP, J. Mol. Cell Cardiol., 139, 176-189, https://doi.org/10.1016/j.yjmcc.2020.01.010.
- Paggio, A., Checchetto, V., Campo, A., Menabò, R., Di Marco, G., Di Lisa, F., Szabo, I., Rizzuto, R., and De Stefani, D. (2019) Identification of an ATP-sensitive potassium channel in mitochondria, Nature, 572, 609-613, https://doi.org/10.1038/s41586-019-1498-3.
- Zorov, D. B. (2022) A window to the potassium world. The evidence of potassium energetics in the mitochondria and identity of the mitochondrial ATP-dependent K+ channel, Biochemistry (Moscow), 87, 683-688, https://doi.org/10.1134/S0006297922080016.
- Capera, J., Navarro-Pérez, M., Moen, A. S., Szabó, I., and Felipe, A. (2022) The mitochondrial routing of the Kv1.3 channel, Front. Oncol., 12, 865686, https://doi.org/10.3389/fonc.2022.865686.
- Chen, G.-L., Li, J., Zhang, J., and Zeng, B. (2023) To be or not to be an ion channel: Cryo-EM structures have a say, Cells, 12, 1870, https://doi.org/10.3390/cells12141870.
- Alavian, K. N., Beutner, G., Lazrove, E., Sacchetti, S., Park, H.-A., Licznerski, P., Li, H., Nabili, P., Hockensmith, K., Graham, M., Porter, G. A., and Jonas, E. A. (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore, Proc. Natl. Acad. Sci. USA, 111, 10580-10585, https://doi.org/10.1073/pnas.1401591111.
- Zhou, W., Marinelli, F., Nief, C., and Faraldo-Gómez, J. D. (2017) Atomistic simulations indicate the c-subunit ring of the F1FO ATP synthase is not the mitochondrial permeability transition pore, eLife, 6, e23781, https://doi.org/10.7554/eLife.23781.
- Gasanov, S. E., Kim, A. A., Yaguzhinsky, L. S., and Dagda, R. K. (2018) Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity, Biochim. Biophys. Acta, 1860, 586-599, https://doi.org/10.1016/j.bbamem.2017.11.014.
- Gasanov, S. E., Shrivastava, I. H., Israilov, F. S., Kim, A. A., Rylova, K. A., Zhang, B., and Dagda, R. K. (2015) Naja naja oxiana Cobra Venom cytotoxins CTI and CTII disrupt mitochondrial membrane integrity: implications for basic three-fingered cytotoxins, PLoS One, 10, e0129248, https://doi.org/10.1371/journal.pone.0129248.
- Белослудцев К. Н., Дубинин М. В., Белослудцева Н. В., Миронова Г. Д. (2019) Транспорт ионов Са2+ митохондриями: механизмы, молекулярные структуры и значение для клетки, Биохимия, 84, 759-775, https://doi.org/10.1134/S0320972519060022.
- Amodeo, G. F., Solesio, M. E., and Pavlov, E. V. (2017) From ATP synthase dimers to C-ring conformational changes: unified model of the mitochondrial permeability transition pore, Cell Death Dis., 8, 1, https://doi.org/10.1038/s41419-017-0042-3.
- Zeng, Y., Han, X., and Gross, R. W. (1998) Phospholipid subclass specific alterations in the passive ion permeability of membrane bilayers: separation of enthalpic and entropic contributions to transbilayer ion flux, Biochemistry, 37, 2346-2355, https://doi.org/10.1021/bi9725172.
- Agadzhanov, M. I., Badzhinian, S. A., and Mkhitarian, V. G. (1979) Role of lipid peroxidation and alpha-tocopherol in the conductivity of model membranes from phospholipids of the liver of rats with burns [in Russian], Bull. Eksp. Biol. Med., 87, 422-425.
- Vähäheikkilä, M., Peltomaa, T., Róg, T., Vazdar, M., Pöyry, S., and Vattulainen, I. (2018) How cardiolipin peroxidation alters the properties of the inner mitochondrial membrane? Chem. Phys. Lipids, 214, 15-23, https://doi.org/10.1016/j.chemphyslip.2018.04.005.
- Paez-Perez, M., Vyšniauskas, A., López-Duarte, I., Lafarge, E. J., López-Ríos De Castro, R., Marques, C. M., Schroder, A. P., Muller, P., Lorenz, C. D., Brooks, N. J., and Kuimova, M. K. (2023) Directly imaging emergence of phase separation in peroxidized lipid membranes, Commun. Chem., 6, 15, https://doi.org/10.1038/s42004-022-00809-x.
- Petrov, V. V., Osin, N. S., Predvoditelev, D. A., and Antonov, V. F. (1978) Ion permeability of bilayer membranes formed from synthetic phospholipids in the phase transition region [in Russian], Biophysics, 23, 61-66.
- Sokolov, V. S., Churakova, T. D., Bulgakov, V. G., Kagan, V. E., and Bilenko, M. V. (1981) Study of the mechanisms of action of lipid peroxidation products on the permeability of bilayer lipid membranes [in Russian], Biophysics, 26, 147-149.
- Sevanian, A., Wratten, M. L., McLeod, L. L., and Kim, E. (1988) Lipid peroxidation and phospholipase A2 activity in liposomes composed of unsaturated phospholipids: a structural basis for enzyme activation, Biochim. Biophys. Acta, 961, 316-327, https://doi.org/10.1016/0005-2760(88)90079-3.
- Ježek, J., Jabůrek, M., Zelenka, J., and Ježek, P. (2010) Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling, Physiol. Res., 59, 737-747, https://doi.org/10.33549/physiolres.931905.
- Medvedev, B. I., Evtodienko, Y. V., Yaguzhinsky, L. S., and Kuzin, A. M. (1977) The role of biomembrane lipids in the molecular mechanism of ion transport radiation damage, Proc. 4 Int. Congr. Int. Radiat. Prot. Assoc., Paris 24-30 April 1977.
- Evtodienko, I. V., Medvedev, B. I., Iaguzhinskiĭ, L. S., Azarashvili, T. S., and Luk’ianenko, A. I. (1979) Composition and inophoric properties of lipids isolated from the Ca2+-transporting glycoprotein of mitochondria [in Russian], Dokl. Akad. Nauk USSR, 249, 1235-1238.
- Evtodienko, Yu .V., Kudzina, Lu. Y., Medvedev, B. I., and Yurkov, I. S. (1997) Direct participation of phospholipids in transmembrane K+-transport, Membr. Cell Biol., 10, 573-581.
- Duncan, A. L. (2020) Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins, Biochem. Soc. Trans., 48, 993-1004, https://doi.org/10.1042/BST20190932.
- Pennington, E. R., Sullivan, E. M., Fix, A., Dadoo, S., Zeczycki, T. N., DeSantis, A., Schlattner, U., Coleman, R. A., Chicco, A. J., Brown, D. A., and Shaikh, S. R. (2018) Proteolipid domains form in biomimetic and cardiac mitochondrial vesicles and are regulated by cardiolipin concentration but not monolyso-cardiolipin, J. Biol. Chem., 293, 15933-15946, https://doi.org/10.1074/jbc.RA118.004948.
- Евтодиенко Ю. В., Кудзина Л. Ю., Медведев Б. И., Юрков И. С. (1996) Непосредственное участие фосфолипидов в трансмембранном переносе ионов калия, Биол. Мембр., 13, 535-536.
- Ye, C., Shen, Z., and Greenberg, M. L. (2016) Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function, J. Bioenerg. Biomembr., 48, 113-123, https://doi.org/10.1007/s10863-014-9591-7.
- Hao, Y., Fan, Y., Feng, J., Zhu, Z., Luo, Z., Hu, H., Li, W., Yang, H., and Ding, G. (2024) ALCAT1-mediated abnormal cardiolipin remodelling promotes mitochondrial injury in podocytes in diabetic kidney disease, Cell Commun. Signal., 22, 26, https://doi.org/10.1186/s12964-023-01399-4.
- Song, C., Zhang, J., Qi, S., Liu, Z., Zhang, X., Zheng, Y., Andersen, J., Zhang, W., Strong, R., Martinez, P. A., Musi, N., Nie, J., and Shi, Y. (2019) Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson’s diseases, Aging Cell, 18, e12941, https://doi.org/10.1111/acel.12941.
- Belosludtsev, K. N., Belosludtseva, N. V., Agafonov, A. V., Penkov, N. V., Samartsev, V. N., Lemasters, J. J., and Mironova, G. D. (2015) Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions, Biochim. Biophys. Acta, 1848, 2200-2205, https://doi.org/10.1016/j.bbamem.2015.05.013.
- Mironova, G. D., Pavlov, E. V. (2021) Mitochondrial cyclosporine A-independent palmitate/Ca2+-induced permeability transition pore (PA-mPT Pore) and its role in mitochondrial function and protection against calcium overload and glutamate toxicity, Cells, 10, 125, https://doi.org/10.3390/cells10010125.
- Акимов С. А., Александрова В. В., Галимзянов Т. Р., Башкиров П. В., Батищев О. В. (2017) Механизм формирования пор в мембранах из стеароилолеоилфосфатидилхолина под действием латерального натяжения, Биол. Мембр. Журн. Мембр. Клет. Биол., 4, 270-283, https://doi.org/10.7868/S023347551704003X.
- Hallock, M. J., Greenwood, A. I., Wang, Y., Morrissey, J. H., Tajkhorshid, E., Rienstra, C. M., and Pogorelov, T. V. (2018) Calcium-induced lipid nanocluster structures: sculpturing of the plasma membrane, Biochemistry, 57, 6897-6905, https://doi.org/10.1021/acs.biochem.8b01069.
- Roesel, D., Eremchev, M., Poojari, C. S., Hub, J. S., and Roke, S. (2022) Ion-induced transient potential fluctuations facilitate pore formation and cation transport through lipid membranes, J. Am. Chem. Soc., 144, 23352-23357, https://doi.org/10.1021/jacs.2c08543.
- Самарцев В. Н., Кожина О. В., Марчик Е. И. (2012) Моделирование разобщающего действия жирных кислот при участии АДФ/АТФи аспартат/глутаматного антипортеров в митохондриях печени, Биофизика, 57, 267-273.
- Kreiter, J., Škulj, S., Brkljača, Z., Bardakji, S., Vazdar, M., and Pohl, E. E. (2023) FA sliding as the mechanism for the ANT1-mediated fatty acid anion transport in lipid bilayers, Int. J. Mol. Sci., 24, 13701, https://doi.org/10.3390/ijms241813701
- Cockrell, R. S., Harris, E. J., and Pressman, B. C. (1967) Synthesis of ATP driven by a potassium gradient in mitochondria, Nature, 215, 1487-1488, https://doi.org/10.1038/2151487a0.
Supplementary files


