MITOCHONDRIAL PERMEABILITY TRANSITION PORE: STRUCTURE, PROPERTIES AND ROLE IN CELLULAR PATHOPHYSIOLOGY
- Authors: Belosludtsev K.N.1,2, Dubinin M.V.1, Belosludtseva N.V.2
-
Affiliations:
- Federal State Budgetary Educational Institution of Higher Education "Mari State University"
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
- Issue: Vol 90, No 12 (2025)
- Pages: 1917–1940
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/376117
- DOI: https://doi.org/10.7868/S3034529425120034
- ID: 376117
Cite item
Abstract
About the authors
K. N. Belosludtsev
Federal State Budgetary Educational Institution of Higher Education "Mari State University"; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Email: bekonik@gmail.com
Yoshkar-Ola, Russia; Pushchino, Russia
M. V. Dubinin
Federal State Budgetary Educational Institution of Higher Education "Mari State University"Yoshkar-Ola, Russia
N. V. Belosludtseva
Institute of Theoretical and Experimental Biophysics of the Russian Academy of SciencesPushchino, Russia
References
- Zoratti, M., and Szabo, I. (1995) Mitochondrial permeability transition, Biochim. Biophys. Acta, 1241, 139-176, https://doi.org/10.1016/0304-4157(95)00003-A.
- Frigo, E., Tommasin, L., Lippe, G., Carraro, M., and Bernardi, P. (2023) The haves and have-nots: the mitochondrial permeability transition pore across species, Cells, 12, 1409, https://doi.org/10.3390/cells12101409.
- Bernardi, P., Gerle, C., Halestrap, A. P., Jonas, E. A., Karch, J., Mnatsakanyan, N., Pavlov, E., Sheu, S. S., and Soukas, A. A. (2023) Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions, Cell Death Differ., 30, 1869-1885, https://doi.org/10.1038/s41418-023-01187-0.
- Bonora, M., Patergnani, S., Ramaccini, D., Morciano, G., Pedriali, G., Kahsay, A. E., Bouhamida, E., Giorgi, C., Wieckowski, M. R., and Pinton, P. (2020) Physiopathology of the permeability transition pore: molecular mechanisms in human pathology, Biomolecules, 10, 998, https://doi.org/10.3390/biom10070998.
- Halestrap, A. P., and Richardson, A. P. (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury, J. Mol. Cell. Cardiol., 78, 129-141, https://doi.org/10.1016/j.yjmcc.2014.08.018.
- Carraro, M., and Bernardi, P. (2023) The mitochondrial permeability transition pore in Ca2+ homeostasis, Cell Calcium, 111, 102719, https://doi.org/10.1016/j.ceca.2023.102719.
- Baev, A. Y., Vinokurov, A. Y., Potapova, E. V., Dunaev, A. V., Angelova, P. R., and Abramov, A. Y. (2024) Mitochondrial permeability transition, cell death and neurodegeneration, Cells, 13, 648, https://doi.org/10.3390/cells13070648.
- Raaflaub, J. (1953) Swelling of isolated mitochondria of the liver and their susceptibility to physicochemical influences, Helv. Physiol. Pharmacol. Acta, 11, 142-156.
- Lehninger, A. L. (1959) Reversal of various types of mitochondrial swelling by adenosine triphosphate, J. Biol. Chem., 234, 2465-2471, https://doi.org/10.1016/S0021-9258(18)69836-9.
- Waite, M., Van Deenen, L., Ruigrok, T., and Elbers, P. (1969) Relation of mitochondrial phospholipase A activity to mitochondrial swelling, J. Lipid Res., 10, 599-608, https://doi.org/10.1016/S0022-2275(20)43055-X.
- Broekemeier, K. M., Schmid, P. C., Schmid, H. H., and Pfeiffer, D. R. (1985) Effects of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from mitochondria, J. Biol. Chem., 260, 105-113, https://doi.org/10.1016/S0021-9258(18)89700-9.
- Belosludtsev, K. N., Dubinin, M. V., Belosludtseva, N. V., and Mironova, G. D. (2019) Mitochondrial Ca2+ transport: mechanisms, molecular structures, and role in cells, Biochemistry (Moscow), 84, 593-607, https://doi.org/10.1134/S0006297919060026.
- Mironova, G. D., and Pavlov, E. V. (2021) Mitochondrial cyclosporine A-independent palmitate/Ca2+-induced permeability transition pore (PA-mPT Pore) and its role in mitochondrial function and protection against calcium overload and glutamate toxicity, Cells, 10, 125, https://doi.org/10.3390/cells10010125.
- Hunter, D. R., and Haworth, R. A. (1979) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms, Arch. Biochem. Biophys., 195, 453-459, https://doi.org/10.1016/0003-9861(79)90371-0.
- Haworth, R. A., and Hunter, D. R. (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site, Arch Biochem Biophys., 195, 460-467, https://doi.org/10.1016/0003-9861(79)90372-2.
- Hunter, D. R., and Haworth, R. A. (1979) The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release, Arch Biochem Biophys., 195, 468-477, https://doi.org/10.1016/0003-9861(79)90373-4.
- Crompton, M., Ellinger, H., and Costi, A. (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress, Biochem. J., 255, 357-360.
- Fournier, N., Ducet, G., and Crevat, A. (1987) Action of cyclosporine on mitochondrial calcium fluxes, J. Bioenerg. Biomembr., 19, 297-303, https://doi.org/10.1007/BF00762419.
- Coluccino, G., Muraca, V. P., Corazza, A., and Lippe, G. (2023) Cyclophilin D in mitochondrial dysfunction: a key player in neurodegeneration? Biomolecules, 13, 1265, https://doi.org/10.3390/biom13081265.
- Halestrap, A. P., and Davidson, A. M. (1990) Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase, Biochem. J., 268, 153-160, https://doi.org/10.1042/bj2680153.
- Kokoszka, J., Waymire, K., Levy, S., Sligh, J., Gai, J., Jones, D., MacGregor, G., and Wallace, D. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature, 427, 461-465, https://doi.org/10.1038/nature02229.
- Leung, A.W., Varanyuwatana, P., and Halestrap, A.P. (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition, J. Biol. Chem., 283, 26312-26323, https://doi.org/10.1074/jbc.M805235200.
- Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., Glick, G. D., Petronilli, V., Zoratti, M., Szabo, I., Lippe, G., and Bernardi, P. (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore, Proc. Natl. Acad. Sci. USA, 110, 5887-5892, https://doi.org/10.1073/pnas.1217823110.
- Mnatsakanyan, N., Beutner, G., Porter, G. A., Alavian, K. N., and Jonas, E. A. (2017) Physiological roles of the mitochondrial permeability transition pore, J. Bioenerg. Biomembr., 49, 13-25, https://doi.org/10.1007/s10863-016-9652-1.
- Mithal, D. S., and Chandel, N. S. (2020) Mitochondrial dysfunction in fragile-X syndrome: plugging the leak may save the ship, Mol Cell., 80, 381-383, https://doi.org/10.1016/j.molcel.2020.10.002.
- Galat, A. (1993) Peptidylproline cis-trans-isomerases: immunophilins, Eur. J. Biochem., 216, 689-707, https://doi.org/10.1111/j.1432-1033.1993.tb18189.x.
- Porter, G. A. Jr., and Beutner, G. (2018) Cyclophilin D, somehow a master regulator of mitochondrial function, Biomolecules, 8, 176, https://doi.org/10.3390/biom8040176.
- Giorgio, V., Bisetto, E., Soriano, M. E., Dabbeni-Sala, F., Basso, E., Petronilli, V., Forte, M. A., Bernardi, P., and Lippe, G. (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex, J. Biol. Chem., 284, 33982-33988, https://doi.org/10.1074/jbc.M109.020115.
- Crompton, M., Virji, S., and Ward, J. M. (1988) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore, Eur. J. Biochem., 258, 729-735, https://doi.org/10.1046/j.1432-1327.1998.2580729.x.
- Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., Brunskill, E. W., Sayen, M. R., Gottlieb, R. A., Dorn, G. W., Robbins, J., and Molkentin, J. D. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death, Nature, 434, 658-662, https://doi.org/10.1038/nature03434.
- Scorrano, L., Nicolli, A., Basso, E., Petronilli, V., and Bernardi, P. (1997) Two modes of activation of the permeability transition pore: the role of mitochondrial cyclophilin, Mol. Cell Biochem., 174, 181-184, https://doi.org/10.1007/978-1-4615-6111-8_27.
- Beutner, G., Alanzalon, R. E., and Porter, G. A. Jr. (2017) Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes, Sci. Rep., 7, 14488, https://doi.org/10.1038/s41598-017-14795-x.
- Castillo, E. C., Morales, J. A., Chapoy-Villanueva, H., Silva-Platas, C., Treviño-Saldaña, N., Guerrero-Beltrán, C. E., Bernal-Ramírez, J., Torres-Quintanilla, A., García, N., Youker, K., Torre-Amione, G., and García-Rivas, G. (2019) Mitochondrial hyperacetylation in the failing hearts of obese patients mediated partly by a reduction in SIRT3: the involvement of the mitochondrial permeability transition pore, Cell Physiol. Biochem., 53, 465-479, https://doi.org/10.33594/000000151.
- Hurst, S., Gonnot, F., Dia, M., Crola Da Silva, C., Gomez, L., and Sheu, S. S. (2020) Phosphorylation of cyclophilin D at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion, Cell Death Dis., 11, 661, https://doi.org/10.1038/s41419-020-02864-5.
- Rasola, A., Sciacovelli, M., Chiara, F., Pantic, B., Brusilow, W. S., and Bernardi, P. (2010) Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition, Proc. Natl. Acad. Sci. USA, 107, 726-731, https://doi.org/10.1073/pnas.0912742107.
- Coluccino, G., Negro, A., Filippi, A., Bean, C., Muraca, V. P., Gissi, C., Canetti, D., Mimmi, M. C., Zamprogno, E., Ciscato, F., Acquasaliente, L., De Filippis, V., Comelli, M., Carraro, M., Rasola, A., Gerle, C., Bernardi, P., Corazza, A., and Lippe, G. (2024) N-terminal cleavage of cyclophilin D boosts its ability to bind F-ATP synthase, Commun. Biol., 7, 1486, https://doi.org/10.1038/s42003-024-07172-8.
- Amanakis, G., Sun, J., Fergusson, M.M., McGinty, S., Liu, C., Molkentin, J. D., and Murphy, E. (2021) Cysteine 202 of cyclophilin D is a site of multiple post-translational modifications and plays a role in cardioprotection, Cardiovasc. Res., 117, 212-223, https://doi.org/10.1093/cvr/cvaa053.
- Monné, M., and Palmieri, F. (2014) Antiporters of the mitochondrial carrier family, Curr. Top. Membr., 73, 289-320, https://doi.org/10.1016/B978-0-12-800223-0.00008-6.
- Klingenberg, M. (2008) The ADP and ATP transport in mitochondria and its carrier, Biochim. Biophys. Acta, 1778, 1978-2021, https://doi.org/10.1016/j.bbamem.2008.04.011.
- Lim, C. H., Hamazaki, T., Braun, E. L., Wade, J., and Terada, N. (2011) Evolutionary genomics implies a specific function of Ant4 in mammalian and anole lizard male germ cells, PLoS One, 6, e23122, https://doi.org/10.1371/journal.pone.0023122.
- Clémençon, B., Babot, M., and Trézéguet, V. (2013) The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction, Mol. Aspects Med., 34, 485-493, https://doi.org/10.1016/j.mam.2012.05.006.
- Brustovetsky, N. (2020) The role of adenine nucleotide translocase in the mitochondrial permeability transition, Cells, 9, 2686, https://doi.org/10.3390/cells9122686.
- Brustovetsky, N., Tropschug, M., Heimpel, S., Heidkämper, D., and Klingenberg, M. (2002) A large Ca2+-dependent channel formed by recombinant ADP/ATP carrier from Neurospora crassa resembles the mitochondrial permeability transition pore, Biochemistry, 41, 11804-11811, https://doi.org/10.1021/bi0200110.
- McStay, G. P., Clarke, S. J., and Halestrap, A. P. (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore, Biochem. J., 367, 541-548, https://doi.org/10.1042/BJ20011672.
- Karch, J., Bround, M. J., Khalil, H., Sargent, M. A., Latchman, N., Terada, N., Peixoto, P. M., and Molkentin, J. D. (2019) Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD, Sci Adv., 5, eaaw4597, https://doi.org/10.1126/sciadv.aaw4597.
- Dubinin, M. V., Talanov, E. Y., Tenkov, K. S., Starinets, V. S., Mikheeva, I. B., Sharapov, M. G., and Belosludtsev, K. N. (2020) Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition, Biochim. Biophys. Acta Mol. Basis Dis., 1866, 165674, https://doi.org/10.1016/j.bbadis.2020.165674.
- Belosludtsev, K. N., Talanov, E. Y., Starinets, V. S., Agafonov, A. V., Dubinin, M. V., and Belosludtseva, N. V. (2019) Transport of Ca2+ and Ca2+-dependent permeability transition in rat liver mitochondria under the streptozotocin-induced type I diabetes, Cells, 8, 1014, https://doi.org/10.3390/cells8091014.
- Belosludtseva, N. V., Ilzorkina, A. I., Serov, D. A., Dubinin, M. V., Talanov, E. Y., Karagyaur, M. N., Primak, A. L., Liu, J., and Belosludtsev, K. N. (2024) ANT-mediated inhibition of the permeability transition pore alleviates palmitate-induced mitochondrial dysfunction and lipotoxicity, Biomolecules, 14, 1159, https://doi.org/10.3390/biom14091159.
- Alves-Figueiredo, H., Silva-Platas, C., Lozano, O., Vázquez-Garza, E., Guerrero-Beltrán, C. E., Zarain-Herzberg, A., and García-Rivas, G. (2021) A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases, Biochim. Biophys. Acta Mol. Basis Dis., 1867, 165992, https://doi.org/10.1016/j.bbadis.2020.165992.
- Macdonald, J. E., and Ashby, P. D. (2025) The molecular mechanism of ATP synthase constrains the evolutionary landscape of chemiosmosis, Biophys. J., 124, 2103-2119, https://doi.org/10.1016/j.bpj.2025.05.017.
- Pinke, G., Zhou, L., and Sazanov, L. A. (2020) Cryo-EM structure of the entire mammalian F-type ATP synthase, Nat. Struct. Mol. Biol., 27, 1077-1085, https://doi.org/10.1038/s41594-020-0503-8.
- Kinnally, K. W., Campo, M. L., and Tedeschi, H. (1989) Mitochondrial channel activity studied by patch-clamping mitoplasts, J. Bioenerg. Biomembr., 21, 497-506, https://doi.org/10.1007/BF00762521.
- Urbani, A., Giorgio, V., Carrer, A., Franchin, C., Arrigoni, G., Jiko, C., Abe, K., Maeda, S., Shinzawa-Itoh, K., Bogers, J. F. M., McMillan, D. G. G., Gerle, C., Szabò, I., and Bernardi, P. (2019) Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore, Nat. Commun., 10, 4341, https://doi.org/10.1038/s41467-019-12331-1.
- Carrer, A., Tommasin, L., Šileikytė, J., Ciscato, F., Filadi, R., Urbani, A., Forte, M., Rasola, A., Szabò, I., Carraro, M., and Bernardi, P. (2021) Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase, Nat. Commun., 12, 4835, https://doi.org/10.1038/s41467-021-25161-x.
- He, J., Carroll, J., Ding, S., Fearnley, I. M, and Walker, J. E. (2017) Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase, Proc. Natl. Acad. Sci. USA, 114, 9086-9091, https://doi.org/10.1073/pnas.1711201114.
- Carraro, M., Giorgio, V., Šileikytė, J., Sartori, G., Forte, M., Lippe, G., Zoratti, M., Szabò, I., and Bernardi, P. (2014) Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition, J. Biol. Chem., 289, 15980-15985, https://doi.org/10.1074/jbc.C114.559633.
- Campanella, M., Casswell, E., Chong, S., Farah, Z., Wieckowski, M. R., Abramov, A. Y., Tinker, A., and Duchen, M. R. (2008) Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1, Cell Metab., 8, 13-25, https://doi.org/10.1016/j.cmet.2008.06.001.
- Carroll, J., He, J., Ding, S., Fearnley, I. M., and Walker, J. E. (2019) Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase, Proc. Natl. Acad. Sci. USA, 116, 12816-12821, https://doi.org/10.1073/pnas.1904005116.
- Mnatsakanyan, N., Llaguno, M. C., Yang, Y., Yan, Y., Weber, J., Sigworth, F. J., and Jonas, E. A. (2019) A mitochondrial megachannel resides in monomeric F1FO ATP synthase, Nat. Commun., 10, 5823, https://doi.org/10.1038/s41467-019-13766-2.
- Alavian, K. N., Beutner, G., Lazrove, E., Sacchetti, S., Park, H. A., Licznerski, P., Li, H., Nabili, P., Hockensmith, K., Graham, M., Porter, G. A. Jr., and Jonas, E. A. (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore, Proc. Natl. Acad. Sci. USA, 111, 10580-10585, https://doi.org/10.1073/pnas.1401591111.
- Bonora, M., Bononi, A., De Marchi, E., Giorgi, C., Lebiedzinska, M., Marchi, S., Patergnani, S., Rimessi, A., Suski, J. M., Wojtala, A., Wieckowski, M. R., Kroemer, G., Galluzzi, L., and Pinton P. (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition, Cell Cycle, 12, 674-683, https://doi.org/10.4161/cc.23599.
- Zhou, W., Marinelli, F., Nief, C., and Faraldo-Gómez, J. D. (2017) Atomistic simulations indicate the c-subunit ring of the F1FO ATP synthase is not the mitochondrial permeability transition pore, Elife, 6, e23781, https://doi.org/10.7554/eLife.23781.
- Gerle, C. (2020) Mitochondrial F-ATP synthase as the permeability transition pore, Pharmacol Res., 160, 105081, https://doi.org/10.1016/j.phrs.2020.105081.
- Morciano, G., Pedriali, G., Bonora, M., Pavasini, R., Mikus, E., Calvi, S., Bovolenta, M., Lebiedzinska-Arciszewska, M., Pinotti, M., Albertini, A., Wieckowski, M. R., Giorgi, C., Ferrari, R., Galluzzi, L., Campo, G., and Pinton, P. (2021) A naturally occurring mutation in ATP synthase subunit c is associated with increased damage following hypoxia/reoxygenation in STEMI patients, Cell Rep., 35, 108983, https://doi.org/10.1016/j.celrep.2021.108983.
- He, J., Ford, H. C., Carroll, J., Ding, S., Fearnley, I. M., and Walker J. E. (2017) Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase, Proc. Natl. Acad. Sci. USA, 114, 3409-3414, https://doi.org/10.1073/pnas.1702357114.
- Neginskaya, M. A., Morris, S. E., and Pavlov, E. V. (2022) Both ANT and ATPase are essential for mitochondrial permeability transition but not depolarization, iScience, 25, 105447, https://doi.org/10.1016/j.isci.2022.105447.
- Neginskaya, M. A., Morris, S. E., and Pavlov, E. V. (2023) Refractive index imaging reveals that elimination of the ATP synthase C subunit does not prevent the adenine nucleotide translocase-dependent mitochondrial permeability transition, Cells, 12, 1950, https://doi.org/10.3390/cells12151950.
- Tommasin, L., Carrer, A., Nata, F.B., Frigo, E., Fogolari, F., Lippe, G., Carraro, M., and Bernardi, P. (2025) Adenine nucleotide translocator and ATP synthase cooperate in mediating the mitochondrial permeability transition, J. Physiol., doi: 10.1113/JP287147.
- Richardson, A. P., and Halestrap, A. P. (2016) Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity, Biochem. J., 473, 1129-1140, https://doi.org/10.1042/BCJ20160070.
- Neginskaya, M. A., Strubbe, J. O., Amodeo, G. F., West, B. A., Yakar, S., Bazil, J. N., and Pavlov, E. V. (2020) The very low number of calcium-induced permeability transition pores in the single mitochondrion, J. Gen. Physiol., 152, e202012631, https://doi.org/10.1085/jgp.202012631.
- Belosludtseva, N. V., Dubinin, M. V., and Belosludtsev, K. N. (2024) Pore-forming VDAC proteins of the outer mitochondrial membrane: regulation and pathophysiological role, Biochemistry (Moscow), 89, 1061-1078, https://doi.org/10.1134/S0006297924060075.
- De Macedo, D. V., da Costa, C., and Pereira-Da-Silva, L. (1997) The permeability transition pore opening in intact mitochondria and submitochondrial particles, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 118, 209-216, https://doi.org/10.1016/s0305-0491(97)00007-2.
- Belosludtsev, K. N., Belosludtseva, N. V., Agafonov, A. V., Astashev, M. E., Kazakov, A. S., Saris, N. E., and Mironova, G. D. (2014) Ca2+-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: a comparative study, Biochim. Biophys. Acta, 1838, 2600-2606, https://doi.org/10.1016/j.bbamem.2014.06.017.
- Baines, C. P., Kaiser, R. A., Sheiko, T., Craigen, W. J., and Molkentin, J. D. (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death, Nat. Cell Biol., 9, 550-555, https://doi.org/10.1038/ncb1575.
- Jaremko, L., Jaremko, M., Giller, K., Becker, S., and Zweckstetter, M. (2014) Structure of the mitochondrial translocator protein in complex with a diagnostic ligand, Science, 343, 1363-1366, https://doi.org/10.1126/science.1248725.
- Morin, D., Musman, J., Pons, S., Berdeaux, A., and Ghaleh, B. (2016) Mitochondrial translocator protein (TSPO): from physiology to cardioprotection, Biochem. Pharmacol., 105, 1-13, https://doi.org/10.1016/j.bcp.2015.12.003.
- Shoshan-Barmatz, V., Pittala, S., and Mizrachi, D. (2019) VDAC1 and the TSPO: expression, interactions, and associated functions in health and disease states, Int. J. Mol. Sci., 20, 3348, https://doi.org/10.3390/ijms20133348.
- Azarashvili, T., Grachev, D., Krestinina, O., Evtodienko, Y., Yurkov, I., Papadopoulos, V., and Reiser, G. (2007) The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria, Cell Calcium, 42, 27-39, https://doi.org/10.1016/j.ceca.2006.11.004.
- Šileikytė, J., Blachly-Dyson, E., Sewell, R., Carpi, A., Menabò, R., Di Lisa, F., Ricchelli, F., Bernardi, P., and Forte, M. (2014) Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (Translocator Protein of 18 kDa (TSPO)), J. Biol. Chem., 289, 13769-13781, https://doi.org/10.1074/jbc.M114.549634.
- Whelan, R. S., Konstantinidis, K., Wei, A. C., Chen, Y., Reyna, D. E., Jha, S., Yang, Y., Calvert, J. W., Lindsten, T., Thompson, C. B., Crow, M. T., Gavathiotis, E., Dorn, G. W., 2nd, O’Rourke, B., and Kitsis, R. N. (2012) Bax regulates primary necrosis through mitochondrial dynamics, Proc. Natl. Acad. Sci. USA, 109, 6566-6571, https://doi.org/10.1073/pnas.1201608109.
- Gutiérrez-Aguilar, M., Douglas, D. L., Gibson, A. K., Domeier, T. L., Molkentin, J. D., and Baines, C. P. (2014) Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition, J. Mol. Cell Cardiol., 72, 316-325, https://doi.org/10.1016/j.yjmcc.2014.04.008.
- Nikiforova, A. B., Baburina, Y. L., Borisova, M. P., Surin, A. K., Kharechkina, E. S., Krestinina, O. V., Suvorina, M. Y., Kruglova, S. A., and Kruglov, A. G. (2023) Mitochondrial F-ATP synthase co-migrating proteins and Ca2+-dependent formation of large channels, Cells, 12, 414, https://doi.org/10.3390/cells12192414.
- Shanmughapriya, S., Rajan, S., Hoffman, N. E., Higgins, A. M., Tomar, D., Nemani, N., Hines, K. J., Smith, D. J., Eguchi, A., Vallem, S., Shaikh, F., Cheung, M., Leonard, N. J., Stolakis., R. S., Wolfers, M. P., Ibetti, J., Chuprun, J. K., Jog, N. R., Houser, S. R., Koch, W. J., Elrod, J. W., and Madesh, M. (2015) SPG7 is an essential and conserved component of the mitochondrial permeability transition pore, Mol. Cell, 60, 47-62, https://doi.org/10.1016/j.molcel.2015.08.009.
- Hurst, S., Baggett, A., Csordas, G., and Sheu, S. S. (2019) SPG7 targets the m-AAA protease complex to process MCU for uniporter assembly, Ca2+ influx, and regulation of mitochondrial permeability transition pore opening, J. Biol. Chem., 294, 10807-10818, https://doi.org/10.1074/jbc.RA118.006443.
- Sambri, I., Massa, F., Gullo, F., Meneghini, S., Cassina, L., Carraro, M., Dina, G., Quattrini, A., Patanella, L., Carissimo, A., Iuliano, A., Santorelli, F., Codazzi, F., Grohovaz, F., Bernardi, P., Becchetti, A., and Casari, G. (2020) Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia, EBioMedicine, 61, 103050, https://doi.org/10.1016/j.ebiom.2020.103050.
- Klutho, P. J., Dashek, R. J., Song, L., and Baines, C. P. (2020) Genetic manipulation of SPG7 or NipSnap2 does not affect mitochondrial permeability transition, Cell Death Discov., 6, 5, https://doi.org/10.1038/s41420-020-0239-6.
- Dolder, M., Wendt, S., and Wallimann, T. (2001) Mitochondrial creatine kinase in contact sites: interaction with porin and adenine nucleotide translocase, role in permeability transition and sensitivity to oxidative damage, Biol. Signals Recept., 10, 93-111, https://doi.org/10.1159/000046878.
- Smeele, K. M., Southworth, R., Wu, R., Xie, C., Nederlof, R., Warley, A., Nelson, J. K., van Horssen, P., van den Wijngaard, J. P., Heikkinen, S., Laakso, M., Koeman, A., Siebes, M., Eerbeek, O., Akar, F. G., Ardehali, H., Hollmann, M. W., and Zuurbier, C. J. (2011) Disruption of hexokinase II-mitochondrial binding blocks ischemic preconditioning and causes rapid cardiac necrosis, Circ. Res., 108, 1165-1169, https://doi.org/10.1161/CIRCRESAHA.111.244962.
- Juhaszova, M., Wang, S., Zorov, D. B., Nuss, H. B., Gleichmann, M., Mattson, M. P., and Sollott, S. J. (2008) The identity and regulation of the mitochondrial permeability transition pore: where the known meets the unknown, Ann. N. Y. Acad. Sci., 1123, 197-212, https://doi.org/10.1196/annals.1420.023.
- Guo, D., Meng, Y., Jiang, X., and Lu, Z. (2023) Hexokinases in cancer and other pathologies, Cell Insight., 2, 100077, https://doi.org/10.1016/j.cellin.2023.100077.
- Zoratti, M., Szabò, I., and De Marchi, U. (2005) Mitochondrial permeability transitions: how many doors to the house? Biochim. Biophys. Acta, 1706, 40-52, https://doi.org/10.1016/j.bbabio.2004.10.006.
- Sultan, A., and Sokolove, P. (2001) Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane, Arch. Biochem. Biophys., 386, 31-51, https://doi.org/10.1006/abbi.2000.2194.
- Agafonov, A., Gritsenko, E., Belosludtsev, K., Kovalev, A., Gateau-Roesch, O., Saris, N.-E. L., and Mironova, G. D. (2003) A permeability transition in liposomes induced by the formation of Ca2+/palmitic acid complexes, Biochim. Biophys. Acta, 1609, 153-160, https://doi.org/10.1016/S0005-2736(02)00666-1.
- Belosludtseva, N. V., Pavlik, L. L., Belosludtsev, K. N., Saris, N. L., Shigaeva, M. I., and Mironova, G. D. (2022) The short-term opening of cyclosporin A-independent palmitate/Sr2+-induced pore can underlie ion efflux in the oscillatory mode of functioning of rat liver mitochondria, Membranes (Basel), 12, 667, https://doi.org/10.3390/membranes12070667.
- Šileikytė, J., and Forte, M. (2016) Shutting down the pore: the search for small molecule inhibitors of the mitochondrial permeability transition, Biochim. Biophys. Acta, 1857, 1197-1202, https://doi.org/10.1016/j.bbabio.2016.02.016.
- Efimov, S. V., Dubinin, M. V., Kobchikova, P. P., Zgadzay, Y. O., Khodov, I. A., Belosludtsev, K. N., and Klochkov, V. V. (2020) Comparison of cyclosporin variants B-E based on their structural properties and activity in mitochondrial membranes, Biochem. Biophys. Res. Commun., 526, 1054-1060, https://doi.org/10.1016/j.bbrc.2020.03.184.
- Rosenwirth, B., Billich, A., Datema, R., Donatsch, P., Hammerschmid, F., Harrison, R., Hiestand, P., Jaksche, H., Mayer, P., and Peichl, P. (1994) Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog, Antimicrob. Agents Chemother., 38, 1763-1772, https://doi.org/10.1128/AAC.38.8.1763.
- Reutenauer, J., Dorchies, O.M., Patthey-Vuadens, O., Vuagniaux, G., and Ruegg, U. T. (2008) Investigation of Debio 025, a cyclophilin inhibitor, in the dystrophic mdx mouse, a model for Duchenne muscular dystrophy, Br. J. Pharmacol., 155, 574-584, https://doi.org/10.1038/bjp.2008.285.
- Dubinin, M. V., Starinets, V. S., Talanov, E. Y., Mikheeva, I. B., Belosludtseva, N. V., and Belosludtsev, K. N. (2021) Alisporivir improves mitochondrial function in skeletal muscle of mdx mice but suppresses mitochondrial dynamics and biogenesis, Int. J. Mol. Sci., 22, 9780, https://doi.org/10.3390/ijms22189780.
- Tiepolo, T., Angelin, A., Palma, E., Sabatelli, P., Merlini, L., Nicolosi, L., Finetti, F., Braghetta, P., Vuagniaux, G., Dumont, J. M., Baldari, C. T., Bonaldo, P., and Bernardi, P. (2009) The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1–/– myopathic mice, Br. J. Pharmacol., 157, 1045-1052, https://doi.org/10.1111/j.1476-5381.2009.00316.x.
- Montagne, A., Nikolakopoulou, A. M., Huuskonen, M. T., Sagare, A. P., Lawson, E. J., Lazic, D., Rege, S. V., Grond, A., Zuniga, E., Barnes, S. R., Prince, J., Sagare, M., Hsu, C. J., LaDu, M. J., Jacobs, R. E., and Zlokovic, B. V. (2021) APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer’s mice via cyclophilin A independently of amyloid-β, Nat. Aging, 1, 506-520, https://doi.org/10.1038/s43587-021-00073-z.
- Dubinin, M. V., Sharapov, V. A., Ilzorkina, A. I., Efimov, S. V., Klochkov, V. V., Gudkov, S. V., and Belosludtsev, K. N. (2022) Comparison of structural properties of cyclosporin A and its analogue alisporivir and their effects on mitochondrial bioenergetics and membrane behavior, Biochim. Biophys. Acta Biomembr., 1864, 183972, https://doi.org/10.1016/j.bbamem.2022.183972.
- Schaller, S., Paradis, S., Ngoh, G.A., Assaly, R., Buisson, B., Drouot, C., Ostuni, M. A., Lacapere, J. J., Bassissi, F., Bordet, T., Berdeaux, A., Jones, S. P., Morin, D., and Pruss, R. M. (2010) TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition, J. Pharmacol. Exp. Ther., 333, 696-706, https://doi.org/10.1124/jpet.110.167486.
- Clarke, S. J., McStay, G. P., and Halestrap, A. P. (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A, J. Biol. Chem., 277, 34793-34799, https://doi.org/10.1074/jbc.M202191200.
- Lim, S. Y., Davidson, S. M., Hausenloy, D. J., and Yellon, D. M. (2007) Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore, Cardiovasc. Res., 75, 530-535, https://doi.org/10.1016/j.cardiores.2007.04.022.
- Albanese, V., Pedriali, G., Fabbri, M., Ciancetta, A., Ravagli, S., Roccatello, C., Guerrini, R., Morciano, G., Preti, D., Pinton, P., and Pacifico, S. (2025) Design and synthesis of 1,4,8-triazaspiro[4.5]decan-2-one derivatives as novel mitochondrial permeability transition pore inhibitors, J. Enzyme Inhib. Med. Chem., 40, 2505907, https://doi.org/10.1080/14756366.2025.2505907.
- Fancelli, D., Abate, A., Amici, R., Bernardi, P., Ballarini, M., Cappa, A., Carenzi, G., Colombo, A., Contursi, C., Di Lisa, F., Dondio, G., Gagliardi, S., Milanesi, E., Minucci, S., Pain, G., Pelicci, P. G., Saccani, A., Storto, M., Thaler, F., Varasi, M., Villa, M., and Plyte, S. (2014) Cinnamic anilides as new mitochondrial permeability transition pore inhibitors endowed with ischemia-reperfusion injury protective effect in vivo, J. Med. Chem., 57, 5333-5347, https://doi.org/10.1021/jm500547c.
- Šileikytė, J., Devereaux, J., de Jong, J., Schiavone, M., Jones, K., Nilsen, A., Bernardi, P., Forte, M., and Cohen, M. S. (2019) Second-generation inhibitors of the mitochondrial permeability transition pore with improved plasma stability, ChemMedChem, 14, 1771-1782, https://doi.org/10.1002/cmdc.201900376.
- Roy, S., Šileikytė, J., Schiavone, M., Neuenswander, B., Argenton, F., Aubé, J., Hedrick, M. P., Chung, T. D., Forte, M. A., Bernardi, P., and Schoenen, F. J. (2015) Discovery, synthesis, and optimization of diarylisoxazole-3-carboxamides as potent inhibitors of the mitochondrial permeability transition pore, ChemMedChem, 10, 1655-1671, https://doi.org/10.1002/cmdc.201500284.
- Stocco, A., Smolina, N., Sabatelli, P., Šileikytė, J., Artusi, E., Mouly, V., Cohen, M., Forte, M., Schiavone, M., and Bernardi, P. (2021) Treatment with a triazole inhibitor of the mitochondrial permeability transition pore fully corrects the pathology of sapje zebrafish lacking dystrophin, Pharmacol Res., 165, 105421, https://doi.org/10.1016/j.phrs.2021.105421.
- Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blachly-Dyson, E., Di Lisa, F., and Forte, M.A. (2006) The mitochondrial permeability transition from in vitro artifact to disease target, FEBS J., 273, 2077-2099, https://doi.org/10.1111/j.1742-4658.2006.05213.x.
- Panel, M., Ghaleh, B., and Morin, D. (2018) Mitochondria and aging: A role for the mitochondrial transition pore? Aging Cell, 17, e12793, https://doi.org/10.1111/acel.12793.
- Angeli, S., Foulger, A., Chamoli, M., Peiris, T. H., Gerencser, A., Shahmirzadi, A. A., Andersen, J., and Lithgow, G. (2021) The mitochondrial permeability transition pore activates the mitochondrial unfolded protein response and promotes aging, Elife, 10, e63453, https://doi.org/10.7554/eLife.63453.
- Du, H., Guo, L., Fang, F., Chen, D., Sosunov, A. A., McKhann, G.M., Yan, Y., Wang, C., Zhang, H., Molkentin, J. D., Gunn-Moore, F. J., Vonsattel, J. P., Arancio, O., Chen, J. X., and Yan, S. D. (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease, Nat. Med., 14, 1097-1105, https://doi.org/10.1038/nm.1868.
- Zhu, Y., Duan, C., Lü, L., Gao, H., Zhao, C., Yu, S., Uéda, K., Chan, P., and Yang, H. (2011) α-Synuclein overexpression impairs mitochondrial function by associating with adenylate translocator, Int. J. Biochem. Cell Biol., 43, 732-741, https://doi.org/10.1016/j.biocel.2011.01.014.
- Belosludtseva, N. V., Matveeva, L. A., and Belosludtsev, K. N. (2023) Mitochondrial dyshomeostasis as an early hallmark and a therapeutic target in amyotrophic lateral sclerosis, Int. J. Mol. Sci., 24, 16833, https://doi.org/10.3390/ijms242316833.
- Singh, S., Ganguly, U., Pal, S., Chandan, G., Thakur, R., Saini, R. V., Chakrabarti, S. S., Agrawal, B. K., and Chakrabarti, S. (2022) Protective effects of cyclosporine A on neurodegeneration and motor impairment in rotenone-induced experimental models of Parkinson’s disease, Eur. J. Pharmacol., 929, 175129, https://doi.org/10.1016/j.ejphar.2022.175129.
- Bordet, T., Berna, P., Abitbol, J. L., and Pruss, R. M. (2010) Olesoxime (TRO19622): a novel mitochondrial-targeted neuroprotective compound, Pharmaceuticals (Basel), 3, 345-368, https://doi.org/10.3390/ph3020345.
- Argaud, L., Gateau-Roesch, O., Muntean, D., Chalabreysse, L., Loufouat, J., Robert, D., and Ovize, M. (2005) Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury, J. Mol. Cell Cardiol., 38, 367-374, https://doi.org/10.1016/j.yjmcc.2004.12.001.
- Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and Tsujimoto, Y. (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature, 434, 652-658, https://doi.org/10.1038/nature03317.
- Cung, T. T., Morel, O., Cayla, G., Rioufol, G., Garcia-Dorado, D., Angoulvant, D., Bonnefoy-Cudraz, E., Guérin, P., Elbaz, M., Delarche, N., Coste, P., Vanzetto, G., Metge, M., Aupetit, J. F., Jouve, B., Motreff, P., Tron, C., Labeque, J. N., Steg, P. G., et al. (2015) Cyclosporine before PCI in patients with acute myocardial infarction, N. Engl. J. Med., 373, 1021-1031, https://doi.org/10.1056/NEJMoa1505489.
- Wrogemann, K., and Pena, S. D. (1976) Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle diseases, Lancet, 1, 672-674, https://doi.org/10.1016/s0140-6736(76)92781-1.
- Zulian, A., Schiavone, M., Giorgio, V., and Bernardi, P. (2016) Forty years later: mitochondria as therapeutic targets in muscle diseases, Pharmacol. Res., 113, 563-573, https://doi.org/10.1016/j.phrs.2016.09.043.
- Millay, D. P., Sargent, M. A., Osinska, H., Baines, C. P., Barton, E. R., Vuagniaux, G., Sweeney, H. L., Robbins, J., and Molkentin, J. D. (2008) Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy, Nat. Med., 14, 442-447, https://doi.org/10.1038/nm1736.
- Dubinin, M. V., and Belosludtsev, K. N. (2023) Ion channels of the sarcolemma and intracellular organelles in duchenne muscular dystrophy: a role in the dysregulation of ion homeostasis and a possible target for therapy, Int. J. Mol. Sci., 24, 2229, https://doi.org/10.3390/ijms24032229.
- Wang, P., Zhang, N., Wu, B., Wu, S., Zhang, Y., and Sun, Y. (2020) The role of mitochondria in vascular calcification, J. Transl. Int. Med., 8, 80-90, https://doi.org/10.2478/jtim-2020-0013.
- Dubinin, M. V., Talanov, E. Y., Tenkov, K. S., Starinets, V. S., Mikheeva, I. B., and Belosludtsev, K. N. (2020) Transport of Ca2+ and Ca2+-dependent permeability transition in heart mitochondria in the early stages of Duchenne muscular dystrophy, Biochim. Biophys. Acta Bioenerg., 1861, 148250, https://doi.org/10.1016/j.bbabio.2020.148250.
- Bround, M. J., Havens, J. R., York, A. J., Sargent, M. A., Karch, J., and Molkentin, J. D. (2023) ANT-dependent MPTP underlies necrotic myofiber death in muscular dystrophy, Sci. Adv., 9, eadi2767, https://doi.org/10.1126/sciadv.adi2767.
- Belosludtseva, N. V., Ilzorkina, A. I., Dubinin, M. V., Mikheeva, I. B., and Belosludtsev, K. N. (2025) Comparative study of structural and functional rearrangements in skeletal muscle mitochondria of SOD1-G93A transgenic mice at pre-, early-, and late-symptomatic stages of ALS progression, Front. Biosci. (Landmark Ed), 30, 28260, https://doi.org/10.31083/FBL28260.
- Hepple, R. T. (2016) Impact of aging on mitochondrial function in cardiac and skeletal muscle, Free Radic. Biol. Med., 98, 177-186, https://doi.org/10.1016/j.freeradbiomed.2016.03.017.
- Belosludtsev, K. N., Belosludtseva, N. V., and Dubinin, M. V. (2020) Diabetes mellitus, mitochondrial dysfunction and Ca2+-dependent permeability transition pore, Int. J. Mol. Sci., 21, 6559, https://doi.org/10.3390/ijms21186559.
- Lablanche, S., Cottet-Rousselle, C., Lamarche, F., Benhamou, P. Y., Halimi, S., Leverve, X., and Fontaine, E. (2011) Protection of pancreatic INS-1 β-cells from glucoseand fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin, Cell Death Dis., 2, e134, https://doi.org/10.1038/cddis.2011.15.
- Belosludtseva, N. V., Starinets, V. S., Mikheeva, I. B., Serov, D. A., Astashev, M. E., Belosludtsev, M. N., Dubinin, M. V., and Belosludtsev, K. N. (2021) Effect of the MPT pore inhibitor alisporivir on the development of mitochondrial dysfunction in the heart tissue of diabetic mice, Biology (Basel), 10, 839, https://doi.org/10.3390/biology10090839.
- Couturier, K., Hininger, I., Poulet, L., Anderson, R. A., Roussel, A. M., Canini, F., and Batandier, C. (2016) Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria, J. Nutr. Biochem., 28, 183-190, https://doi.org/10.1016/j.jnutbio.2015.10.016.
- Oliveira, P. J., Seiça, R., Coxito, P. M., Rolo, A. P., Palmeira, C. M., Santos, M. S, and Moreno, A. J. (2003) Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats, FEBS Lett., 554, 511-514, https://doi.org/10.1016/s0014-5793(03)01233-x.
- Monaco, C. M. F., Hughes, M. C., Ramos, S. V., Varah, N. E., Lamberz, C., Rahman, F. A., McGlory, C., Tarnopolsky, M. A., Krause, M. P., Laham, R., Hawke, T. J., and Perry, C. G. R. (2018) Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes, Diabetologia, 61, 1411-1423, https://doi.org/10.1007/s00125-018-4602-6.
- Ferreira, F. M., Seiça, R., Oliveira, P. J., Coxito, P. M., Moreno, A. J., Palmeira, C. M., and Santos, M. S. (2003) Diabetes induces metabolic adaptations in rat liver mitochondria: role of coenzyme Q and cardiolipin contents, Biochim. Biophys. Acta, 1639, 113-120, https://doi.org/10.1016/j.bbadis.2003.08.001.
- Teodoro, J. S., Rolo, A. P., Duarte, F. V., Simões, A. M., and Palmeira, C. M. (2008) Differential alterations in mitochondrial function induced by a choline-deficient diet: understanding fatty liver disease progression, Mitochondrion, 8, 367-376, https://doi.org/10.1016/j.mito.2008.07.008.
- Taddeo, E. P., Laker, R. C., Breen, D. S., Akhtar, Y. N., Kenwood, B. M., Liao, J. A., Zhang, M., Fazakerley, D. J., Tomsig, J. L., Harris, T. E., Keller, S. R., Chow, J. D., Lynch, K. R., Chokki, M., Molkentin, J. D., Turner, N., James, D. E., Yan, Z., and Hoehn, K. L. (2013) Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle, Mol. Metab., 3, 124-134, https://doi.org/10.1016/j.molmet.2013.11.003.
- Belosludtsev, K. N., Starinets, V. S., Talanov, E. Y., Mikheeva, I. B., Dubinin, M. V., and Belosludtseva, N. V. (2021) Alisporivir treatment alleviates mitochondrial dysfunction in the skeletal muscles of C57BL/6NCrl mice with high-fat diet/streptozotocin-induced diabetes mellitus, Int. J. Mol. Sci., 22, 9524, https://doi.org/10.3390/ijms22179524.
- Starinets, V. S., Serov, D. A., Penkov, N. V., Belosludtseva, N. V., Dubinin, M. V., and Belosludtsev, K. N. (2022) Alisporivir normalizes mitochondrial function of primary mouse lung endothelial cells under conditions of hyperglycemia, Biochemistry (Moscow), 87, 605-616, https://doi.org/10.1134/S0006297922070033.
- Belosludtsev, K. N., Serov, D. A., Ilzorkina, A.I., Starinets, V. S., Dubinin, M. V., Talanov, E. Y., Karagyaur, M. N., Primak, A. L., and Belosludtseva, N. V. (2023) Pharmacological and genetic suppression of VDAC1 alleviates the development of mitochondrial dysfunction in endothelial and fibroblast cell cultures upon hyperglycemic conditions, Antioxidants (Basel), 12, 1459, https://doi.org/10.3390/antiox12071459.
- Zhu, X., Qin, Z., Zhou, M., Li, C., Jing, J., Ye, W., and Gan, X. (2024) The role of mitochondrial permeability transition in bone metabolism, bone healing, and bone diseases, Biomolecules, 14, 1318, https://doi.org/10.3390/biom14101318.
- Sautchuk, R., Kalicharan, B. H., Escalera-Rivera, K., Jonason, J. H., Porter, G. A., Awad, H. A., and Eliseev, R. A. (2022) Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation, Elife, 11, e75023, https://doi.org/10.7554/eLife.75023.
- Shares, B. H., Smith, C. O., Sheu, T. J., Sautchuk, R. Jr., Schilling, K., Shum, L. C., Paine, A., Huber, A., Gira, E., Brown, E., Awad, H., and Eliseev, R. A. (2020) Inhibition of the mitochondrial permeability transition improves bone fracture repair, Bone, 137, 115391, https://doi.org/10.1016/j.bone.2020.115391.
- He, Y., Zhang, L., Zhu, Z., Xiao, A., Yu, H., and Gan, X. (2017) Blockade of cyclophilin D rescues dexamethasone-induced oxidative stress in gingival tissue, PLoS One, 12, e0173270, https://doi.org/10.1371/journal.pone.0173270.
- He, P., Liu, F., Li, M., Ren, M., Wang, X., Deng, Y., Wu, X., Li, Y., Yang, S., and Song, J. (2023) Mitochondrial calcium ion nanogluttons alleviate periodontitis via controlling mPTPs, Adv. Health. Mater., 12, e2203106, https://doi.org/10.1002/adhm.202203106.
- Bonora, M., and Pinton, P. (2014) The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death, Front. Oncol., 4, 302, https://doi.org/10.3389/fonc.2014.00302.
Supplementary files


