🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

BIOMOLECULAR CONDENSATES IN REGULATION OF TRANSCRIPTION AND CHROMATIN ARCHITECTURE

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Recent research highlights the pivotal role of liquid-like complexes – biomolecular condensates – in gene control. Biomolecular condensates involve enhancers and gene promoters into microenvironments with specific composition, capable of both activating and repressing transcription or maintaining its appropriate level. Aside from that, condensates can influence chromatin structure and are important participants in enhancer-promoter communication. Finally, condensates represent a perspective therapeutic target, as their misregulation results in a broad spectrum of pathologies. In this review, we cover most recent as well as fundamental research establishing the role for condensates in gene expression regulation and enhancer-promoter communication.

Авторлар туралы

A. Selivanovskiy

Institute of Gene Biology, Russian Academy of Sciences; Moscow Institute of Physics and Technology; Lomonosov Moscow State University

119334 Moscow, Russia; 141700 Dolgoprudny, Russia; 119234 Moscow, Russia

S. Razin

Institute of Gene Biology, Russian Academy of Sciences; Lomonosov Moscow State University

119334 Moscow, Russia; 119234 Moscow, Russia

S. Ulianov

Institute of Gene Biology, Russian Academy of Sciences; Lomonosov Moscow State University

Email: sergey.vulyanov@gmail.com
119334 Moscow, Russia; 119234 Moscow, Russia

Әдебиет тізімі

  1. Andersson, R., and Sandelin, A. (2020) Determinants of enhancer and promoter activities of regulatory elements, Nat. Rev. Genet., 21, 71-87, https://doi.org/10.1038/s41576-019-0173-8.
  2. Vernimmen, D., and Bickmore, W. A. (2015) The hierarchy of transcriptional activation: from enhancer to promoter, Trends Genet., 31, 696-708, https://doi.org/10.1016/j.tig.2015.10.004.
  3. Grosveld, F., van Staalduinen, J., and Stadhouders, R. (2021) Transcriptional regulation by (super)enhancers: from discovery to mechanisms, Annu. Rev. Genomics Hum. Genet., 22, 127-146, https://doi.org/10.1146/annurevgenom-122220-093818.
  4. Blobel, G. A., Higgs, D. R., Mitchell, J. A., Notani, D., and Young, R. A. (2021) Testing the super-enhancer concept, Nat. Rev. Genet., 22, 749-755, https://doi.org/10.1038/s41576-021-00398-w.
  5. Karpinska, M. A., and Oudelaar, A. M. (2023) The role of loop extrusion in enhancer-mediated gene activation, Curr. Opin. Genet. Dev., 79, 102022, https://doi.org/10.1016/j.gde.2023.102022.
  6. Oudelaar, A. M., and Higgs, D. R. (2021) The relationship between genome structure and function, Nat. Rev. Genet., 22, 154-168, https://doi.org/10.1038/s41576-020-00303-x.
  7. Li, Y., Haarhuis, J. H. I., Sedeño Cacciatore, Á., Oldenkamp, R., van Ruiten, M. S., Willems, L., Teunissen, H., Muir, K. W., de Wit, E., Rowland, B. D., and Panne, D. (2020) The structural basis for cohesin-CTCF-anchored loops, Nature, 578, 472-476, https://doi.org/10.1038/s41586-019-1910-z.
  8. Rippe, K., and Papantonis, A. (2025) RNA polymerase II transcription compartments – from factories to condensates, Nat. Rev. Genet., 26, 775-788, https://doi.org/10.1038/s41576-025-00859-6.
  9. Pei, G., Lyons, H., Li, P., and Sabari, B. R. (2025) Transcription regulation by biomolecular condensates, Nat. Rev. Mol. Cell Biol., 26, 213-236, https://doi.org/10.1038/s41580-024-00789-x.
  10. Boeynaems, S., Alberti, S., Fawzi, N. L., Mittag, T., Polymenidou, M., Rousseau, F., Schymkowitz, J., Shorter, J., Wolozin, B., Van Den Bosch, L., Tompa, P., and Fuxreiter, M. (2018) Protein phase separation: a new phase in cell biology, Trends Cell Biol., 28, 420-435, https://doi.org/10.1016/j.tcb.2018.02.004.
  11. Holehouse, A. S., and Alberti, S. (2025) Molecular determinants of condensate composition, Mol. Cell, 85, 290-308, https://doi.org/10.1016/j.molcel.2024.12.021.
  12. Cermakova, K., and Hodges, H. C. (2023) Interaction modules that impart specificity to disordered protein, Trends Biochem. Sci., 48, 477-490, https://doi.org/10.1016/j.tibs.2023.01.004.
  13. Van der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D. T., Kim, P. M., Kriwacki, R. W., Oldfield, C. J., Pappu, R. V., Tompa, P., Uversky, V. N., Wright, P. E., and Babu, M. M. (2014) Classification of intrinsically disordered regions and proteins, Chem. Rev., 114, 6589-6631, https://doi.org/10.1021/cr400525m.
  14. Davey, N. E., Van Roey, K., Weatheritt, R. J., Toedt, G., Uyar, B., Altenberg, B., Budd, A., Diella, F., Dinkel, H., and Gibson, T. J. (2012) Attributes of short linear motifs, Mol. Biosyst., 8, 268-281, https://doi.org/10.1039/c1mb05231d.
  15. Xu, M., Jiang, S.-Y., Tang, S., Zhu, M., Hu, Y., Li, J., Yan, J., Qin, C., Tan, D., An, Y., Qu, Y., Song, B.-L., Ma, H., and Qi, W. (2025) Nuclear SREBP2 condensates regulate the transcriptional activation of lipogenic genes and cholesterol homeostasis, Nat. Metab., 7, 1034-1051, https://doi.org/10.1038/s42255-025-01291-0.
  16. Xie, F., Zhou, X., Ran, Y., Li, R., Zou, J., Wan, S., Su, P., Meng, X., Yan, H., Lu, H., Ru, H., Hu, H., Mao, Z., Yang, B., Zhou, F., and Zhang, L. (2025) Targeting FOXM1 condensates reduces breast tumour growth and metastasis, Nature, 638, 1112-1121, https://doi.org/10.1038/s41586-024-08421-w.
  17. Hess, N., and Joseph, J. A. (2025) Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function, Trends Biochem. Sci., 50, 206-223, https://doi.org/10.1016/j.tibs.2024.12.008.
  18. Wei, M.-T., Chang, Y.-C., Shimobayashi, S. F., Shin, Y., Strom, A. R., and Brangwynne, C. P. (2020) Nucleated transcriptional condensates amplify gene expression, Nat. Cell Biol., 22, 1187-1196, https://doi.org/10.1038/s41556-020-00578-6.
  19. Ahn, J. H., Davis, E. S., Daugird, T. A., Zhao, S., Quiroga, I. Y., Uryu, H., Li, J., Storey, A. J., Tsai, Y.-H., Keeley, D. P., Mackintosh, S. G., Edmondson, R. D., Byrum, S. D., Cai, L., Tackett, A. J., Zheng, D., Legant, W. R., Phanstiel, D. H., and Wang, G. G. (2021) Phase separation drives aberrant chromatin looping and cancer development, Nature, 595, 591-595, https://doi.org/10.1038/s41586-021-03662-5.
  20. Morin, J. A., Wittmann, S., Choubey, S., Klosin, A., Golfier, S., Hyman, A. A., Jülicher, F., and Grill, S. W. (2022) Sequence-dependent surface condensation of a pioneer transcription factor on DNA, Nat. Phys., 18, 271-276, https://doi.org/10.1038/s41567-021-01462-2.
  21. Foran, G., Hallam, R. D., Megaly, M., Turgambayeva, A., Antfolk, D., Li, Y., Luca, V. C., and Necakov, A. (2024) Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping, Sci. Rep., 14, 21912, https://doi.org/10.1038/s41598-024-71634-6.
  22. Stortz, M., Presman, D. M., and Levi, V. (2024) Transcriptional condensates: a blessing or a curse for gene regulation? Commun. Biol., 7, 187, https://doi.org/10.1038/s42003-024-05892-5.
  23. Song, L., Yao, X., Li, H., Peng, B., Boka, A. P., Liu, Y., Chen, G., Liu, Z., Mathias, K. M., Xia, L., Li, Q., Mir, M., Li, Y., Li, H., and Wan, L. (2022) Hotspot mutations in the structured ENL YEATS domain link aberrant transcriptional condensates and cancer, Mol. Cell, 82, 4080-4098.e12, https://doi.org/10.1016/j.molcel.2022.09.034.
  24. Cho, W.-K., Spille, J.-H., Hecht, M., Lee, C., Li, C., Grube, V., and Cisse, I. I. (2018) Mediator and RNA polymerase II clusters associate in transcription-dependent condensates, Science, 361, 412-415, https://doi.org/10.1126/science.aar4199.
  25. Rawat, P., Boehning, M., Hummel, B., Aprile-Garcia, F., Pandit, A. S., Eisenhardt, N., Khavaran, A., Niskanen, E., Vos, S. M., Palvimo, J. J., Pichler, A., Cramer, P., and Sawarkar, R. (2021) Stress-induced nuclear condensation of NELF drives transcriptional downregulation, Mol. Cell, 81, 1013-1026.e11, https://doi.org/10.1016/j.molcel.2021.01.016.
  26. Zamudio, A. V., Dall’Agnese, A., Henninger, J. E., Manteiga, J. C., Afeyan, L. K., Hannett, N. M., Coffey, E. L. Li, C. H., Oksuz, O., Sabari, B. R., Boija, A., Klein, I. A., Hawken, S. W., Spille, J.-H., Decker, T.-M., Cisse, I. I., Abraham, B. J., Lee, T. I., Taatjes, D. J., Schuijers, J., and Young, R. A. (2019) Mediator condensates localize signaling factors to key cell identity genes, Mol. Cell, 76, 753-766.e6, https://doi.org/10.1016/j.molcel.2019.08.016.
  27. Xie, J., He, H., Kong, W., Li, Z., Gao, Z., Xie, D., Sun, L., Fan, X., Jiang, X., Zheng, Q., Li, G., Zhu, J., and Zhu, G. (2022) Targeting androgen receptor phase separation to overcome antiandrogen resistance, Nat. Chem. Biol., 18, 1341-1350, https://doi.org/10.1038/s41589-022-01151-y.
  28. Shao, Y., Shu, X., Lu, Y., Zhu, W., Li, R., Fu, H., Li, C., Sun, W., Li, Z., Zhang, Y., Cao, X., Ye, X., Ajiboye, E., Zhao, B., Zhang, L., Wu, H., Feng, X.-H., Yang, B., and Lu, H. (2024) A chaperone-like function of FUS ensures TAZ condensate dynamics and transcriptional activation, Nat. Cell Biol., 26, 86-99, https://doi.org/10.1038/s41556-023-01309-3.
  29. Xiao, Y., Yuan, Y., Jimenez, M., Soni, N., and Yadlapalli, S. (2021) Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms, Proc. Natl. Acad. Sci. USA, 118, e2019756118, https://doi.org/10.1073/pnas.2019756118.
  30. Irgen-Gioro, S., Yoshida, S., Walling, V., and Chong, S. (2022) Fixation can change the appearance of phase separation in living cells, eLife, 11, e79903, https://doi.org/10.7554/eLife.79903.
  31. Schnell, U., Dijk, F., Sjollema, K. A., and Giepmans, B. N. G. (2012) Immunolabeling artifacts and the need forlive-cell imaging, Nat. Methods, 9, 152-158, https://doi.org/10.1038/nmeth.1855.
  32. Teves, S. S., An, L., Hansen, A. S., Xie, L., Darzacq, X., and Tjian, R. (2016) A dynamic mode of mitotic bookmarking by transcription factors, eLife, 5, e22280, https://doi.org/10.7554/eLife.22280.
  33. Gan, P., Eppert, M., De La Cruz, N., Lyons, H., Shah, A. M., Veettil, R. T., Chen, K., Pradhan, P., Bezprozvannaya, S., Xu, L., Liu, N., Olson, E. N., and Sabari, B. R. (2024) Coactivator condensation drives cardiovascular cell lineage specification, Sci. Adv., 10, eadk7160, https://doi.org/10.1126/sciadv.adk7160.
  34. He, J., Huo, X., Pei, G., Jia, Z., Yan, Y., Yu, J., Qu, H., Xie, Y., Yuan, J., Zheng, Y., Hu, Y., Shi, M., You, K., Li, T., Ma, T., Zhang, M. Q., Ding, S., Li, P., and Li, Y. (2024) Dual-role transcription factors stabilize intermediate expression levels, Cell, 187, 2746-2766.e25, https://doi.org/10.1016/j.cell.2024.03.023.
  35. Du, M., Stitzinger, S. H., Spille, J.-H., Cho, W.-K., Lee, C., Hijaz, M., Quintana, A., and Cissé, I. I. (2024) Direct observation of a condensate effect on super-enhancer controlled gene bursting, Cell, 187, 331-344.e17, https://doi.org/10.1016/j.cell.2023.12.005.
  36. Lu, Y., Wu, T., Gutman, O., Lu, H., Zhou, Q., Henis, Y. I., and Luo, K. (2020) Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression, Nat. Cell Biol., 22, 453-464, https://doi.org/10.1038/s41556-020-0485-0.
  37. Datta, D., Navalkar, A., Sakunthala, A., Paul, A., Patel, K., Masurkar, S., Gadhe, L., Manna, S., Bhattacharyya, A., Sengupta, S., Poudyal, M., Devi, J., Sawner, A. S., Kadu, P., Shaw, R., Pandey, S., Mukherjee, S., Gahlot, N., Sengupta, K., and Maji, S. K. (2024) Nucleo-cytoplasmic environment modulates spatiotemporal p53 phase separation, Sci. Adv., 10, eads0427, https://doi.org/10.1126/sciadv.ads0427.
  38. Stortz, M., Pecci, A., Presman, D. M., and Levi, V. (2020) Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor, BMC Biol., 18, 59, https://doi.org/10.1186/s12915-020-00788-2.
  39. Kim, Y. R., Joo, J., Lee, H. J., Kim, C., Park, J.-C., Yu, Y. S., Kim, C. R., Lee, D. H., Cha, J., Kwon, H., Hanssen, K. M., Grünewald, T. G. P., Choi, M., Han, I., Bae, S., Jung, I., Shin, Y., and Baek, S. H. (2024) Prion-like domain mediated phase separation of ARID1A promotes oncogenic potential of Ewing’s sarcoma, Nat. Commun., 15, 6569, https://doi.org/10.1038/s41467-024-51050-0.
  40. Sabari, B. R., Dall’Agnese, A., Boija, A., Klein, I. A., Coffey, E. L., Shrinivas, K., Abraham, B. J., Hannett, N. M., Zamudio, A. V., Manteiga, J. C., Li, C. H., Guo, Y. E., Day, D. S., Schuijers, J., Vasile, E., Malik, S., Hnisz, D., Lee, T. I., Cisse, I. I., Roeder, R. G., Sharp, P. A., Chakraborty, A. K., and Young, R. A. (2018) Coactivator condensation at super-enhancers links phase separation and gene control, Science, 361, eaar3958, https://doi.org/10.1126/science.aar3958.
  41. Huoh, Y.-S., Zhang, Q., Törner, R., Baca, S. C., Arthanari, H., and Hur, S. (2024) Mechanism for controlled assembly of transcriptional condensates by Aire, Nat. Immunol., 25, 1580-1592, https://doi.org/10.1038/s41590-024-01922-w.
  42. Ma, L., Gao, Z., Wu, J., Zhong, B., Xie, Y., Huang, W., and Lin, Y. (2021) Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics, Mol. Cell, 81, 1682-1697.e7, https://doi.org/10.1016/j.molcel.2021.01.031.
  43. Kim, Y. J., Lee, M., Lee, Y.-T., Jing, J., Sanders, J. T., Botten, G. A., He, L., Lyu, J., Zhang, Y., Mettlen, M., Ly, P., Zhou, Y., and Xu, J. (2023) Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions, Sci. Adv., 9, eadg1123, https://doi.org/10.1126/sciadv.adg1123.
  44. Lee, C., Quintana, A., Suppanz, I., Gomez-Auli, A., Mittler, G., and Cissé, I. I. (2024) Light-induced targeting enables proteomics on endogenous condensates, Cell, 187, 7079-7090.e17, https://doi.org/10.1016/j.cell.2024.09.040.
  45. Schneider, N., Wieland, F.-G., Kong, D., Fischer, A. A. M., Hörner, M., Timmer, J., Ye, H., and Weber, W. (2021) Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice, Sci. Adv., 7, eabd3568, https://doi.org/10.1126/sciadv.abd3568.
  46. Ma, S., Liao, K., Li, M., Wang, X., Lv, J., Zhang, X., Huang, H., Li, L., Huang, T., Guo, X., Lin, Y., and Rong, Z. (2023) Phase-separated DropCRISPRa platform for efficient gene activation in mammalian cells and mice, Nucleic Acids Res., 51, 5271-5284, https://doi.org/10.1093/nar/gkad301.
  47. Shin, Y., Chang, Y.-C., Lee, D. S. W., Berry, J., Sanders, D. W., Ronceray, P., Wingreen, N. S., Haataja, M., and Brangwynne, C. P. (2018) Liquid nuclear condensates mechanically sense and restructure the genome, Cell, 175, 1481-1491.e13, https://doi.org/10.1016/j.cell.2018.10.057.
  48. Strom, A. R., Kim, Y., Zhao, H., Chang, Y.-C., Orlovsky, N. D., Košmrlj, A., Storm, C., and Brangwynne, C. P. (2024) Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity, Cell, 187, 5282-5297.e20, https://doi.org/10.1016/j.cell.2024.07.034.
  49. Sabari, B. R., Hyman, A. A., and Hnisz, D. (2025) Functional specificity in biomolecular condensates revealed by genetic complementation, Nat. Rev. Genet., 26, 279-290, https://doi.org/10.1038/s41576-024-00780-4.
  50. Liu, W., Deng, L., Wang, M., Liu, X., Ouyang, X., Wang, Y., Miao, N., Luo, X., Wu, X., Lu, X., Xv, X., Zhang, T., Li, Y., Ji, J., Qiao, Z., Wang, S., Guan, L., Li, D., Dang, Y., Liu, C., Li, W., Zhang, Y., Wang, Z., Chen, F. X., Chen, C., Lin, C., Goh, W. S. S., Zhou, W., Luo, Z., Gao, P., Li, P., and Yu, Y. (2025) Pcf11/Spt5 condensates stall RNA polymerase II to facilitate termination and piRNA-guided heterochromatin formation, Mol. Cell, 85, 929-947.e10, https://doi.org/10.1016/j.molcel.2025.01.023.
  51. Kuang, J., Zhai, Z., Li, P., Shi, R., Guo, W., Yao, Y., Guo, J., Zhao, G., He, J., Xu, S., Wu, C., Yu, S., Zhou, C., Wu, L., Qin, Y., Cai, B., Li, W., Wu, Z., Li, X., Chu, S., Yang, T., Wang, B., Cao, S., Li, D., Zhang, X., Chen, J., Liu, J., and Pei, D. (2021) SS18 regulates pluripotent-somatic transition through phase separation, Nat. Commun., 12, 4090, https://doi.org/10.1038/s41467-021-24373-5.
  52. Shi, B., Li, W., Song, Y., Wang, Z., Ju, R., Ulman, A., Hu, J., Palomba, F., Zhao, Y., Le, J. P., Jarrard, W., Dimoff, D., Digman, M. A., Gratton, E., Zang, C., and Jiang, H. (2021) UTX condensation underlies its tumour-suppressive activity, Nature, 597, 726-731, https://doi.org/10.1038/s41586-021-03903-7.
  53. Bremer, A., Lang, W. H., Kempen, R. P., Sweta, K., Taylor, A. B., Borgia, M. B., Ansari, A. Z., and Mittag, T. (2025) Reconciling competing models on the roles of condensates and soluble complexes in transcription factor function, Mol. Cell, 85, 2718-2732.e7, https://doi.org/10.1016/j.molcel.2025.06.008.
  54. Patil, A., Strom, A. R., Paulo, J. A., Collings, C. K., Ruff, K. M., Shinn, M. K., Sankar, A., Cervantes, K. S., Wauer, T., St. Laurent, J. D., Xu, G., Becker, L. A., Gygi, S. P., Pappu, R. V., Brangwynne, C. P., and Kadoch, C. (2023) A disordered region controls cBAF activity via condensation and partner recruitment, Cell, 186, 4936-4955.e26, https://doi.org/10.1016/j.cell.2023.08.032.
  55. Basu, S., Mackowiak, S. D., Niskanen, H., Knezevic, D., Asimi, V., Grosswendt, S., Geertsema, H., Ali, S., Jerković, I., Ewers, H., Mundlos, S., Meissner, A., Ibrahim, D. M., and Hnisz, D. (2020) Unblending of transcriptional condensates in human repeat expansion disease, Cell, 181, 1062-1079.e30, https://doi.org/10.1016/j.cell.2020.04.018.
  56. Kosno, M., Currie, S. L., Kumar, A., Xing, C., and Rosen, M. K. (2023) Molecular features driving condensate formation and gene expression by the BRD4-NUT fusion oncoprotein are overlapping but distinct, Sci. Rep., 13, 11907, https://doi.org/10.1038/s41598-023-39102-9.
  57. Yang, J., Chung, C.-I., Koach, J., Liu, H., Navalkar, A., He, H., Ma, Z., Zhao, Q., Yang, X., He, L., Mittag, T., Shen, Y., Weiss, W. A., and Shu, X. (2024) MYC phase separation selectively modulates the transcriptome, Nat. Struct. Mol. Biol., 31, 1567-1579, https://doi.org/10.1038/s41594-024-01322-6.
  58. Chung, C.-I., Yang, J., Yang, X., Liu, H., Ma, Z., Szulzewsky, F., Holland, E. C., Shen, Y., and Shu, X. (2024) Phase separation of YAP-MAML2 differentially regulates the transcriptome, Proc. Natl. Acad. Sci. USA, 121, e2310430121, https://doi.org/10.1073/pnas.2310430121.
  59. Brumbaugh-Reed, E. H., Gao, Y., Aoki, K., and Toettcher, J. E. (2024) Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag, Nat. Commun., 15, 6717, https://doi.org/10.1038/s41467-024-50858-0.
  60. Zhang, J. Z., Greenwood, N., Hernandez, J., Cuperus, J. T., Huang, B., Ryder, B. D., Queitsch, C., Gestwicki, J. E., and Baker, D. (2025) De novo designed Hsp70 activator dissolves intracellular condensates, Cell Chem. Biol., 32, 463-473.e6, https://doi.org/10.1016/j.chembiol.2025.01.006.
  61. Chen, L., Zhang, Z., Han, Q., Maity, B. K., Rodrigues, L., Zboril, E., Adhikari, R., Ko, S.-H., Li, X., Yoshida, S. R., Xue, P., Smith, E., Xu, K., Wang, Q., Huang, T. H.-M., Chong, S., and Liu, Z. (2023) Hormone-induced enhancer assembly requires an optimal level of hormone receptor multivalent interactions, Mol. Cell, 83, 3438-3456.e12, https://doi.org/10.1016/j.molcel.2023.08.027.
  62. Cho, W.-K., Jayanth, N., English, B. P., Inoue, T., Andrews, J. O., Conway, W., Grimm, J. B., Spille, J.-H., Lavis, L. D., Lionnet, T., and Cisse, I. I. (2016) RNA Polymerase II cluster dynamics predict mRNA output in living cells, eLife, 5, e13617, https://doi.org/10.7554/eLife.13617.
  63. Chabot, N. M., Purkanti, R., Ridolfi, A. D. P., Nogare, D. D., Oda, H., Kimura, H., Jug, F., Co, A. D., and Vastenhouw, N. L. (2024) Local DNA compaction creates TF-DNA clusters that enable transcription, bioRxiv, https://doi.org/10.1101/2024.07.25.605169.
  64. Wang, H., Li, B., Zuo, L., Wang, B., Yan, Y., Tian, K., Zhou, R., Wang, C., Chen, X., Jiang, Y., Zheng, H., Qin, F., Zhang, B., Yu, Y., Liu, C.-P., Xu, Y., Gao, J., Qi, Z., Deng, W., and Ji, X. (2022) The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors, Nat. Commun., 13, 5703, https://doi.org/10.1038/s41467-022-33433-3.
  65. Guo, Y. E., Manteiga, J. C., Henninger, J. E., Sabari, B. R., Dall’Agnese, A., Hannett, N. M., Spille, J.-H., Afeyan, L. K., Zamudio, A. V., Shrinivas, K., Abraham, B. J., Boija, A., Decker, T.-M., Rimel, J. K., Fant, C. B., Lee, T. I., Cisse, I. I., Sharp, P. A., Taatjes, D. J., and Young, R. A. (2019) Pol II phosphorylation regulates a switch between transcriptional and splicing condensates, Nature, 572, 543-548, https://doi.org/10.1038/s41586-019-1464-0.
  66. Kawasaki, K., and Fukaya, T. (2023) Functional coordination between transcription factor clustering and gene activity, Mol. Cell, 83, 1605-1622.e9, https://doi.org/10.1016/j.molcel.2023.04.018.
  67. Forero-Quintero, L. S., Raymond, W., Handa, T., Saxton, M. N., Morisaki, T., Kimura, H., Bertrand, E., Munsky, B., and Stasevich, T. J. (2021) Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene, Nat. Commun., 12, 3158, https://doi.org/10.1038/s41467-021-23417-0.
  68. Li, J., Dong, A., Saydaminova, K., Chang, H., Wang, G., Ochiai, H., Yamamoto, T., and Pertsinidis, A. (2019) Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells, Cell, 178, 491-506.e28, https://doi.org/10.1016/j.cell.2019.05.029.
  69. Zhang, Q., Kim, W., Panina, S. B., Mayfield, J. E., Portz, B., and Zhang, Y. J. (2024) Variation of C-terminal domain governs RNA polymerase II genomic locations and alternative splicing in eukaryotic transcription, Nat. Commun., 15, 7985, https://doi.org/10.1038/s41467-024-52391-6.
  70. Giudice, J., and Jiang, H. (2024) Splicing regulation through biomolecular condensates and membraneless organelles, Nat. Rev. Mol. Cell Biol., 25, 683-700, https://doi.org/10.1038/s41580-024-00739-7.
  71. Fu, Y., Yang, X., Li, S., Ma, C., An, Y., Cheng, T., Liang, Y., Sun, S., Cheng, T., Zhao, Y., Wang, J., Wang, X., Xu, P., Yin, Y., Liang, H., Liu, N., Zou, W., and Chen, B. (2025) Dynamic properties of transcriptional condensates modulate CRISPRa-mediated gene activation, Nat. Commun., 16, 1640, https://doi.org/10.1038/s41467-025-56735-8.
  72. Liu, J., Chen, Y., Nong, B., Luo, X., Cui, K., Li, Z., Zhang, P., Tan, W., Yang, Y., Ma, W., Liang, P., and Songyang, Z. (2023) CRISPR-assisted transcription activation by phase-separation proteins, Protein Cell, 14, 874-887, https://doi.org/10.1093/procel/pwad013.
  73. Chen, R., Shi, X., Yao, X., Gao, T., Huang, G., Ning, D., Cao, Z., Xu, Y., Liang, W., Tian, S. Z., Zhu, Q., Fang, L., Zheng, M., Hu, Y., Cui, H., and Chen, W. (2024) Specific multivalent molecules boost CRISPR-mediated transcriptional activation, Nat. Commun., 15, 7222, https://doi.org/10.1038/s41467-024-51694-y.
  74. Nair, S. J., Yang, L., Meluzzi, D., Oh, S., Yang, F., Friedman, M. J., Wang, S., Suter, T., Alshareedah, I., Gamliel, A., Ma, Q., Zhang, J., Hu, Y., Tan, Y., Ohgi, K. A., Jayani, R. S., Banerjee, P. R., Aggarwal, A. K., and Rosenfeld, M. G. (2019) Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly, Nat. Struct. Mol. Biol., 26, 193-203, https://doi.org/10.1038/s41594-019-0190-5.
  75. Trojanowski, J., Frank, L., Rademacher, A., Mücke, N., Grigaitis, P., and Rippe, K. (2022) Transcription activation is enhanced by multivalent interactions independent of phase separation, Mol. Cell, 82, 1878-1893.e10, https://doi.org/10.1016/j.molcel.2022.04.017.
  76. Chong, S., Graham, T. G. W., Dugast-Darzacq, C., Dailey, G. M., Darzacq, X., and Tjian, R. (2022) Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription, Mol. Cell, 82, 2084-2097. e5, https://doi.org/10.1016/j.molcel.2022.04.007.
  77. Jung, J.-H., Barbosa, A. D., Hutin, S., Kumita, J. R., Gao, M., Derwort, D., Silva, C. S., Lai, X., Pierre, E., Geng, F., Kim, S.-B., Baek, S., Zubieta, C., Jaeger, K. E., and Wigge, P. A. (2020) A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis, Nature, 585, 256-260, https://doi.org/10.1038/s41586-020-2644-7.
  78. Huang, X., Yang, Y., and Xu, C. (2025) Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture, New Phytol., 245, 88-94, https://doi.org/10.1111/nph.20204.
  79. Ren, Q., Li, L., Liu, L., Li, J., Shi, C., Sun, Y., Yao, X., Hou, Z., and Xiang, S. (2025) The molecular mechanism of temperature-dependent phase separation of heat shock factor 1, Nat. Chem. Biol., 21, 831-842, https://doi.org/10.1038/s41589-024-01806-y.
  80. Wu, Z., Pope, S. D., Ahmed, N. S., Leung, D. L., Hong, Y., Hajjar, S., Krabak, C., Zhong, Z., Raghunathan, K., Yue, Q., Anand, D. M., Kopp, E. B., Okin, D., Ma, W., Zanoni, I., Kagan, J. C., Thiagarajah, J. R., Hargreaves, D. C., Medzhitov, R., and Zhou, X. (2025) Regulation of inflammatory responses by pH-dependent transcriptional condensates, Cell, 188, 5632-5652.e25, https://doi.org/10.1016/j.cell.2025.06.033.
  81. Henninger, J. E., Oksuz, O., Shrinivas, K., Sagi, I., LeRoy, G., Zheng, M. M., Andrews, J. O., Zamudio, A. V., Lazaris, C., Hannett, N. M., Lee, T. I., Sharp, P. A., Cissé, I. I., Chakraborty, A. K., and Young, R. A. (2021) RNA-mediated feedback control of transcriptional condensates, Cell, 184, 207-225.e24, https://doi.org/10.1016/j.cell.2020.11.030.
  82. Mazzocca, M., Fillot, T., Loffreda, A., Gnani, D., and Mazza, D. (2021) The needle and the haystack: single molecule tracking to probe the transcription factor search in eukaryotes, Biochem. Soc. Trans., 49, 1121-1132, https://doi.org/10.1042/BST20200709.
  83. Jonas, F., Navon, Y., and Barkai, N. (2025) Intrinsically disordered regions as facilitators of the transcription factor target search, Nat. Rev. Genet., 26, 424-435, https://doi.org/10.1038/s41576-025-00816-3.
  84. Kent, S., Brown, K., Yang, C.-H., Alsaihati, N., Tian, C., Wang, H., and Ren, X. (2020) Phase-separated transcriptional condensates accelerate target-search process revealed by live-cell single-molecule imaging, Cell Rep., 33, 108248, https://doi.org/10.1016/j.celrep.2020.108248.
  85. Wang, X., Bigman, L. S., Greenblatt, H. M., Yu, B., Levy, Y., and Iwahara, J. (2023) Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins, Nucleic Acids Res., 51, 4701-4712, https://doi.org/10.1093/nar/gkad045.
  86. Meeussen, J. V. W., Pomp, W., Brouwer, I., de Jonge, W. J., Patel, H. P., and Lenstra, T. L. (2023) Transcription factor clusters enable target search but do not contribute to target gene activation, Nucleic Acids Res., 51, 5449-5468, https://doi.org/10.1093/nar/gkad227.
  87. Alfano, C., Fichou, Y., Huber, K., Weiss, M., Spruijt, E., Ebbinghaus, S., De Luca, G., Morando, M. A., Vetri, V., Temussi, P. A., and Pastore, A. (2024) Molecular crowding: the history and development of a scientific paradigm, Chem. Rev., 124, 3186-3219, https://doi.org/10.1021/acs.chemrev.3c00615.
  88. Rudnizky, S., Murray, P. J., Wolfe, C. H., and Ha, T. (2024) Single-macromolecule studies of eukaryotic genomic maintenance, Annu. Rev. Phys. Chem., 75, 209-230, https://doi.org/10.1146/annurev-physchem-090722-010601.
  89. Garcia, D. A., Johnson, T. A., Presman, D. M., Fettweis, G., Wagh, K., Rinaldi, L., Stavreva, D. A., Paakinaho, V., Jensen, R. A. M., Mandrup, S., Upadhyaya, A., and Hager, G. L. (2021) An intrinsically disordered region-mediated confinement state contributes to the dynamics and function of transcription factors, Mol. Cell, 81, 1484-1498. e6, https://doi.org/10.1016/j.molcel.2021.01.013.
  90. Jonas, F., Carmi, M., Krupkin, B., Steinberger, J., Brodsky, S., Jana, T., and Barkai, N. (2023) The molecular grammar of protein disorder guiding genome-binding locations, Nucleic Acids Res., 51, 4831-4844, https://doi.org/10.1093/nar/gkad184.
  91. Ling, Y. H., Ye, Z., Liang, C., Yu, C., Park, G., Corden, J. L., and Wu, C. (2023) Disordered C-terminal domain drives spatiotemporal confinement of RNAPII to enhance search for chromatin targets, BioRxiv, https://doi.org/10.1101/2023.07.31.551302.
  92. Li, C. H., Coffey, E. L., Dall’Agnese, A., Hannett, N. M., Tang, X., Henninger, J. E., Platt, J. M., Oksuz, O., Zamudio, A. V., Afeyan, L. K., Schuijers, J., Liu, X. S., Markoulaki, S., Lungjangwa, T., LeRoy, G., Svoboda, D. S., Wogram, E., Lee, T. I., Jaenisch, R., and Young, R. A. (2020) MeCP2 links heterochromatin condensates and neurodevelopmental disease, Nature, 586, 440-444, https://doi.org/10.1038/s41586-020-2574-4.
  93. Tatavosian, R., Kent, S., Brown, K., Yao, T., Duc, H. N., Huynh, T. N., Zhen, C. Y., Ma, B., Wang, H., and Ren, X. (2019) Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation, J. Biol. Chem., 294, 1451-1463, https://doi.org/10.1074/jbc.RA118.006620.
  94. Uckelmann, M., Levina, V., Taveneau, C., Ng, X. H., Pandey, V., Martinez, J., Mendiratta, S., Houx, J., Boudes, M., Venugopal, H., Trépout, S., Fulcher, A. J., Zhang, Q., Flanigan, S., Li, M., Sierecki, E., Gambin, Y., Das, P. P., Bell, O., de Marco, A., and Davidovich, C. (2025) Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates, Nat. Struct. Mol. Biol., 32, 520-530, https://doi.org/10.1038/s41594-024-01457-6.
  95. Collombet, S., Rall, I., Dugast-Darzacq, C., Heckert, A., Halavatyi, A., Le Saux, A., Dailey, G., Darzacq, X., and Heard, E. (2023) RNA polymerase II depletion from the inactive X chromosome territory is not mediated by physical compartmentalization, Nat. Struct. Mol. Biol., 30, 1216-1223, https://doi.org/10.1038/s41594-023-01008-5.
  96. Murphy, S. E., and Boettiger, A. N. (2024) Polycomb repression of Hox genes involves spatial feedback but not domain compaction or phase transition, Nat. Genet., 56, 493-504, https://doi.org/10.1038/s41588-024-01661-6.
  97. Eeftens, J. M., Kapoor, M., Michieletto, D., and Brangwynne, C. P. (2021) Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction, Nat. Commun., 12, 5888, https://doi.org/10.1038/s41467-021-26147-5.
  98. Ding, M., Wang, D., Chen, H., Kesner, B., Grimm, N.-B., Weissbein, U., Lappala, A., Jiang, J., Rivera, C., Lou, J., Li, P., and Lee, J. T. (2025) A biophysical basis for the spreading behavior and limited diffusion of Xist, Cell, 188, 978-997.e25, https://doi.org/10.1016/j.cell.2024.12.004.
  99. Zhang, Y., Li, X.-H., Peng, P., Qiu, Z.-H., Di, C.-X., Chen, X.-F., Wang, N.-N., Chen, F., He, Y.-W., Liu, Z.-B., Zhao, F., Zhu, D.-L., Dong, S.-S., Hu, S.-Y., Yang, Z., Li, Y.-P., Guo, Y., and Yang, T.-L. (2025) RUNX2 phase separation mediates long-range regulation between osteoporosis-susceptibility variant and XCR1 to promote osteoblast differentiation, Adv. Sci. Weinh. Baden Wurtt. Ger., 12, e2413561, https://doi.org/10.1002/advs.202413561.
  100. . Vicioso-Mantis, M., Fueyo, R., Navarro, C., Cruz-Molina, S., van Ijcken, W. F. J., Rebollo, E., Rada-Iglesias, Á., and Martínez-Balbás, M. A. (2022) JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ- dependent transcription activation, Nat. Commun., 13, 3263, https://doi.org/10.1038/s41467-022-30614-y.
  101. . Shrinivas, K., Sabari, B. R., Coffey, E. L., Klein, I. A., Boija, A., Zamudio, A. V., Schuijers, J., Hannett, N. M., Sharp, P. A., Young, R. A., and Chakraborty, A. K. (2019) Enhancer features that drive formation of transcriptional condensates, Mol. Cell, 75, 549-561.e7, https://doi.org/10.1016/j.molcel.2019.07.009.
  102. . Xing, Y.-H., Dong, R., Lee, L., Rengarajan, S., Riggi, N., Boulay, G., and Rivera, M. N. (2024) DisP-seq reveals the genome-wide functional organization of DNA-associated disordered proteins, Nat. Biotechnol., 42, 52-64, https://doi.org/10.1038/s41587-023-01737-4.
  103. . Yu, Z., Wang, Q., Zhang, Q., Tian, Y., Yan, G., Zhu, J., Zhu, G., and Zhang, Y. (2024) Decoding the genomic landscape of chromatin-associated biomolecular condensates, Nat. Commun., 15, 6952, https://doi.org/10.1038/s41467-024-51426-2.
  104. . Wang, S., Wang, Z., and Zang, C. (2025) Genomic clustering tendency of transcription factors reflects phase-separated transcriptional condensates at super-enhancers, Nucleic Acids Res., 53, gkaf015, https://doi.org/10.1093/nar/gkaf015.
  105. . Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K., and Sharp, P. A. (2017) A phase separation model for transcriptional control, Cell, 169, 13-23, https://doi.org/10.1016/j.cell.2017.02.007.
  106. . Rao, S. S. P., Huang, S.-C., Glenn St Hilaire, B., Engreitz, J. M., Perez, E. M., Kieffer-Kwon, K.-R., Sanborn, A. L., Johnstone, S. E., Bascom, G. D., Bochkov, I. D., Huang, X., Shamim, M. S., Shin, J., Turner, D., Ye, Z., Omer, A. D., Robinson, J. T., Schlick, T., Bernstein, B. E., Casellas, R., Lander, E. S., and Aiden, E. L. (2017) Cohesin loss eliminates all loop domains, Cell, 171, 305-320.e24, https://doi.org/10.1016/j.cell.2017.09.026.
  107. . Boija, A., Klein, I. A., Sabari, B. R., Dall’Agnese, A., Coffey, E. L., Zamudio, A. V., Li, C. H., Shrinivas, K., Manteiga, J. C., Hannett, N. M., Abraham, B. J., Afeyan, L. K., Guo, Y. E., Rimel, J. K., Fant, C. B., Schuijers, J., Lee, T. I., Taatjes, D. J., and Young, R. A. (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains, Cell, 175, 1842-1855.e16, https://doi.org/10.1016/j.cell.2018.10.042.
  108. . Li, J., Liu, S., Kim, S., Goell, J., Drum, Z. A., Flores, J. P., Ma, A. J., Mahata, B., Escobar, M., Raterink, A., Ahn, J. H., Terán, E. R., Guerra-Resendez, R. S., Zhou, Y., Yu, B., Diehl, M. R., Wang, G. G., Gustavsson, A.-K., Phanstiel, D. H., and Hilton, I. B. (2025) Biomolecular condensation of human IDRs initiates endogenous transcription via intrachromosomal looping or high-density promoter localization, Nucleic Acids Res., 53, gkaf056, https://doi.org/10.1093/nar/gkaf056.
  109. . Selivanovskiy, A. V., Molodova, M. N., Khrameeva, E. E., Ulianov, S. V., and Razin, S. V. (2025) Liquid condensates: a new barrier to loop extrusion? Cell. Mol. Life Sci., 82, 80, https://doi.org/10.1007/s00018-024-05559-8.
  110. . Lee, R., Kang, M.-K., Kim, Y.-J., Yang, B., Shim, H., Kim, S., Kim, K., Yang, C. M., Min, B., Jung, W.-J., Lee, E.-C., Joo, J.-S., Park, G., Cho, W.-K., and Kim, H.-P. (2022) CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates, Nucleic Acids Res., 50, 207-226, https://doi.org/10.1093/nar/gkab1242.
  111. . Hansen, A. S. (2020) CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism, Nucleus, 11, 132-148, https://doi.org/10.1080/19491034.2020.1782024.
  112. . Wei, C., Jia, L., Huang, X., Tan, J., Wang, M., Niu, J., Hou, Y., Sun, J., Zeng, P., Wang, J., Qing, L., Ma, L., Liu, X., Tang, X., Li, F., Jiang, S., Liu, J., Li, T., Fan, L., Sun, Y., Gao, J., Li, C., and Ding, J. (2022) CTCF organizes inter-A compartment interactions through RYBP-dependent phase separation, Cell Res., 32, 744-760, https://doi.org/10.1038/s41422-022-00676-0.
  113. . Gao, C., Gao, A., Jiang, Y., Gao, R., Guo, Y., Peng, Z., Jiang, W., Zhang, M., Zhou, Z., Yan, C., Fang, W., Hu, H., Zhu, G., and Zhang, J. (2025) Hypoxia-induced phase separation of ZHX2 alters chromatin looping to drive cancer metastasis, Mol. Cell, 85, 1525-1542.e10, https://doi.org/10.1016/j.molcel.2025.03.009.
  114. . Heist, T., Fukaya, T., and Levine, M. (2019) Large distances separate coregulated genes in living Drosophila embryos, Proc. Natl. Acad. Sci., 116, 15062-15067, https://doi.org/10.1073/pnas.1908962116.
  115. . Fukaya, T., Lim, B., and Levine, M. (2016) Enhancer control of transcriptional bursting, Cell, 166, 358-368, https://doi.org/10.1016/j.cell.2016.05.025.
  116. . Bohrer, C. H., and Larson, D. R. (2023) Synthetic analysis of chromatin tracing and live-cell imaging indicates pervasive spatial coupling between genes, eLife, 12, e81861, https://doi.org/10.7554/eLife.81861.
  117. . Mahat, D. B., Tippens, N. D., Martin-Rufino, J. D., Waterton, S. K., Fu, J., Blatt, S. E., and Sharp, P. A. (2024) Single-cell nascent RNA sequencing unveils coordinated global transcription, Nature, 631, 216-223, https://doi.org/10.1038/s41586-024-07517-7.
  118. . Chowdhary, S., Kainth, A. S., Paracha, S., Gross, D. S., and Pincus, D. (2022) Inducible transcriptional condensates drive 3D genome reorganization in the heat shock response, Mol. Cell, 82, 4386-4399.e7, https://doi.org/10.1016/j.molcel.2022.10.013.
  119. . Oka, M., Otani, M., Miyamoto, Y., Oshima, R., Adachi, J., Tomonaga, T., Asally, M., Nagaoka, Y., Tanaka, K., Toyoda, A., Ichikawa, K., Morishita, S., Isono, K., Koseki, H., Nakato, R., Ohkawa, Y., and Yoneda, Y. (2023) Phase-separated nuclear bodies of nucleoporin fusions promote condensation of MLL1/CRM1 and rearrangement of 3D genome structure, Cell Rep., 42, 112884, https://doi.org/10.1016/j.celrep.2023.112884.
  120. . Christou-Kent, M., Cuartero, S., Garcia-Cabau, C., Ruehle, J., Naderi, J., Erber, J., Neguembor, M. V., PlanaCarmona, M., Alcoverro-Bertran, M., Andres-Aguayo, L. D., Klonizakis, A., Julià-Vilella, E., Lynch, C., Serrano, M., Hnisz, D., Salvatella, X., Graf, T., and Stik, G. (2023) CEBPA phase separation links transcriptional activity and 3D chromatin hubs, Cell Rep., 42, 112897, https://doi.org/10.1016/j.celrep.2023.112897.
  121. . Ohishi, H., Shinkai, S., Owada, H., Fujii, T., Hosoda, K., Onami, S., Yamamoto, T., Ohkawa, Y., and Ochiai, H. (2024) Transcription-coupled changes in genomic region proximities during transcriptional bursting, Sci. Adv., 10, eadn0020, https://doi.org/10.1126/sciadv.adn0020.
  122. . Panigrahi, A. K., Lonard, D. M., and O’Malley, B. W. (2023) Enhancer-promoter entanglement explains their transcriptional interdependence, Proc. Natl. Acad. Sci. USA, 120, e2216436120, https://doi.org/10.1073/pnas.2216436120.
  123. . Altendorfer, E., Mundlos, S., and Mayer, A. (2025) A transcription coupling model for how enhancers communicate with their target genes, Nat. Struct. Mol. Biol., 32, 598-606, https://doi.org/10.1038/s41594-025-01523-7.
  124. . Banani, S. F., Afeyan, L. K., Hawken, S. W., Henninger, J. E., Dall’Agnese, A., Clark, V. E., Platt, J. M., Oksuz, O., Hannett, N. M., Sagi, I., Lee, T. I., and Young, R. A. (2022) Genetic variation associated with condensate dysregulation in disease, Dev. Cell, 57, 1776-1788.e8, https://doi.org/10.1016/j.devcel.2022.06.010.
  125. . Asimi, V., Sampath Kumar, A., Niskanen, H., Riemenschneider, C., Hetzel, S., Naderi, J., Fasching, N., Popitsch, N., Du, M., Kretzmer, H., Smith, Z. D., Weigert, R., Walther, M., Mamde, S., Meierhofer, D., Wittler, L., Buschow, R.,
  126. Timmermann, B., Cisse, I. I., Ameres, S. L., Meissner, A., and Hnisz, D. (2022) Hijacking of transcriptional condensates by endogenous retroviruses, Nat. Genet., 54, 1238-1247, https://doi.org/10.1038/s41588-022-01132-w.
  127. . Qi, H., Yin, M., Ren, X., Chen, G., Li, A., Li, Y., Cao, X., and Zhou, J. (2025) HSV-1 ICP22 condensates impair host transcription by depleting promoter RNAPII Ser-2P occupation, Front. Microbiol., 16, https://doi.org/10.3389/fmicb.2025.1538737.
  128. . Mensah, M. A., Niskanen, H., Magalhaes, A. P., Basu, S., Kircher, M., Sczakiel, H. L., Reiter, A. M. V., Elsner, J., Meinecke, P., Biskup, S., Chung, B. H. Y., Dombrowsky, G., Eckmann-Scholz, C., Hitz, M. P., Hoischen, A., Holterhus, P.-M., Hülsemann, W., et al. (2023) Aberrant phase separation and nucleolar dysfunction in rare genetic diseases, Nature, 614, 564-571, https://doi.org/10.1038/s41586-022-05682-1.
  129. . Ahn, J. H., Guo, Y., Lyons, H., Mackintosh, S. G., Lau, B. K., Edmondson, R. D., Byrum, S. D., Storey, A. J., Tackett, A. J., Cai, L., Sabari, B. R., and Wang, G. G. (2025) The phenylalanine-and-glycine repeats of NUP98 oncofusions form condensates that selectively partition transcriptional coactivators, Mol. Cell, 85, 708-725.e9, https://doi.org/10.1016/j.molcel.2024.12.026.
  130. . Lyons, H., Pradhan, P., Prakasam, G., Vashishtha, S., Li, X., Eppert, M., Fornero, C., Tcheuyap, V. T., McGlynn, K., Yu, Z., Raju, D. R., Koduru, P. R., Xing, C., Kapur, P., Brugarolas, J., and Sabari, B. R. (2025) RNA polymerase II partitioning is a shared feature of diverse oncofusion condensates, Cell, 188, 3843-3862.e28, https://doi.org/10.1016/j.cell.2025.04.002.
  131. . Showpnil, I. A., Selich-Anderson, J., Taslim, C., Boone, M. A., Crow, J. C., Theisen, E. R., and Lessnick, S. L. (2022) EWS/FLI mediated reprogramming of 3D chromatin promotes an altered transcriptional state in Ewing sarcoma, Nucleic Acids Res., 50, 9814-9837, https://doi.org/10.1093/nar/gkac747.
  132. . Wang, Y., Yu, C., Pei, G., Jia, W., Li, T., and Li, P. (2023) Dissolution of oncofusion transcription factor condensates for cancer therapy, Nat. Chem. Biol., 19, 1223-1234, https://doi.org/10.1038/s41589-023-01376-5.
  133. . Zhang, Y., Stöppelkamp, I., Fernandez-Pernas, P., Allram, M., Charman, M., Magalhaes, A. P., PiedaventSalomon, M., Sommer, G., Sung, Y.-C., Meyer, K., Grams, N., Halko, E., Dongre, S., Meierhofer, D., Malszycki, M., Ilik, I. A., Aktas, T., Kraushar, M. L., Vastenhouw, N., Weitzman, M. D., et al. (2025) Probing condensate microenvironments with a micropeptide killswitch, Nature, 643, 1107-1116, https://doi.org/10.1038/s41586-025-09141-5.
  134. . Naderi, J., Magalhaes, A. P., Kibar, G., Stik, G., Zhang, Y., Mackowiak, S. D., Wieler, H. M., Rossi, F., Buschow, R., Christou-Kent, M., Alcoverro-Bertran, M., Graf, T., Vingron, M., and Hnisz, D. (2024) An activity-specificity trade-off encoded in human transcription factors, Nat. Cell Biol., 26, 1309-1321, https://doi.org/10.1038/s41556-024-01411-0.
  135. . Semeigazin, A., Minami, K., Shimazoe, M. A., Khochbin, S., Panne, D., Ide, S., and Maeshima, K. (2025) Liquid-like transcription condensates locally constrain chromatin in living human cells, bioRxiv, https:// doi.org/10.1101/2025.07.05.663270.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».