LONG NON-CODING RNA JPX: STRUCTURE, FUNCTIONS, AND ROLE IN CHROMATIN ARCHITECTURE

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Long non-coding RNAs (lncRNA) are new key regulators of cellular processes and biomarkers of various pathologies. JPX is a multifunctional lncRNA that is involved in the regulation of transcription, translation, and chromatin structure. JPX influences transcription and enhancer-promoter communication by controlling the activity of DNA binding proteins, particularly the chromatin architectural protein CTCF. In addition, JPX can also interact with microRNAs and mRNA stabilizing/degrading proteins, thereby regulating translation in the pathogenesis of oncological and other diseases. The study of JPX opens up new directions in the field of molecular methods of genome regulation. This review summarizes the accumulated knowledge about the structure, evolutionary origin and functions of the lncRNA JPX.

Авторлар туралы

A. Selivanovskiy

Institute of Gene Biology, Russian Academy of Sciences; Moscow Institute of Physics and Technology; Lomonosov Moscow State University

119334 Moscow, Russia; 141700 Dolgoprudny, Russia; 119234 Moscow, Russia

A. Sivkina

Institute of Gene Biology, Russian Academy of Sciences

119334 Moscow, Russia

S. Ulianov

Institute of Gene Biology, Russian Academy of Sciences; Moscow Institute of Physics and Technology

119334 Moscow, Russia; 141700 Dolgoprudny, Russia

S. Razin

Institute of Gene Biology, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: sergey.vrazin@inbox.ru
119334 Moscow, Russia; 141700 Dolgoprudny, Russia

Әдебиет тізімі

  1. Palihati, M., and Saitoh, N. (2024) RNA in chromatin organization and nuclear architecture, Curr. Opin. Genet. Dev., 86, 102176, https://doi.org/10.1016/j.gde.2024.102176.
  2. Liang, W.-W., Müller, S., Hart, S. K., Wessels, H.-H., Méndez-Mancilla, A., Sookdeo, A., Choi, O., Caragine, C. M., Corman, A., Lu, L., Kolumba, O., Williams, B., and Sanjana, N. E. (2024) Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells, Cell, 187, 7637-7654.e29, https://doi.org/10.1016/j.cell.2024.10.021.
  3. Statello, L., Guo, C.-J., Chen, L.-L., and Huarte, M. (2021) Gene regulation by long non-coding RNAs and its biological functions, Nat. Rev. Mol. Cell Biol., 22, 96-118, https://doi.org/10.1038/s41580-020-00315-9.
  4. Ferrer, J., and Dimitrova, N. (2024) Transcription regulation by long non-coding RNAs: mechanisms and disease relevance, Nat. Rev. Mol. Cell Biol., 25, 396-415, https://doi.org/10.1038/s41580-023-00694-9.
  5. Mattick, J. S., Amaral, P. P., Carninci, P., Carpenter, S., Chang, H. Y., Chen, L.-L., Chen, R., Dean, C., Dinger, M. E., Fitzgerald, K. A., Gingeras, T. R., Guttman, M., Hirose, T., Huarte, M., Johnson, R., Kanduri, C., Kapranov, P., Lawrence, J. B., Lee, J. T., Mendell, J. T., Mercer, T. R., Moore, K. J., Nakagawa, S., Rinn, J. L., Spector, D. L., Ulitsky, I., Wan, Y., Wilusz, J. E., and Wu, M. (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations, Nat. Rev. Mol. Cell Biol., 24, 430-447, https://doi.org/10.1038/s41580-022-00566-8.
  6. Ghafouri-Fard, S., and Taheri, M. (2019) Nuclear Enriched Abundant Transcript 1 (NEAT1): a long non-coding RNA with diverse functions in tumorigenesis, Biomed. Pharmacother., 111, 51-59, https://doi.org/10.1016/j.biopha.2018.12.070.
  7. Arun, G., Aggarwal, D., and Spector, D. L. (2020) MALAT1 long non-coding RNA: functional implications, Non-Coding RNA, 6, 22, https://doi.org/10.3390/ncrna6020022.
  8. Nojima, T., and Proudfoot, N. J. (2022) Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics, Nat. Rev. Mol. Cell Biol., 23, 389-406, https://doi.org/10.1038/s41580-021-00447-6.
  9. Chen, L.-L., and Kim, V. N. (2024) Small and long non-coding RNAs: past, present, and future, Cell, 187, 6451-6485, https://doi.org/10.1016/j.cell.2024.10.024.
  10. Deveson, I. W., Brunck, M. E., Blackburn, J., Tseng, E., Hon, T., Clark, T. A., Clark, M. B., Crawford, J., Dinger, M. E., Nielsen, L. K., Mattick, J. S., and Mercer, T. R. (2018) Universal alternative splicing of noncoding exons, Cell Syst., 6, 245-255.e5, https://doi.org/10.1016/j.cels.2017.12.005.
  11. Jégu, T., Blum, R., Cochrane, J. C., Yang, L., Wang, C.-Y., Gilles, M.-E., Colognori, D., Szanto, A., Marr, S. K., Kingston, R. E., and Lee, J. T. (2019) Xist RNA antagonizes the SWI/SNF chromatin remodeler BRG1 on the inactive X chromosome, Nat. Struct. Mol. Biol., 26, 96-109, https://doi.org/10.1038/s41594-018-0176-8.
  12. Chu, H.-P., Cifuentes-Rojas, C., Kesner, B., Aeby, E., Lee, H., Wei, C., Oh, H. J., Boukhali, M., Haas, W., and Lee, J. T. (2017) TERRA RNA antagonizes ATRX and protects telomeres, Cell, 170, 86-101.e16, https://doi.org/10.1016/j.cell.2017.06.017.
  13. Daneshvar, K., Ardehali, M. B., Klein, I. A., Hsieh, F.-K., Kratkiewicz, A. J., Mahpour, A., Cancelliere, S. O. L., Zhou, C., Cook, B. M., Li, W., Pondick, J. V., Gupta, S. K., Moran, S. P., Young, R. A., Kingston, R. E., and Mullen, A. C. (2020) lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation, Nat. Cell Biol., 22, 1211-1222, https://doi.org/10.1038/s41556-020-0572-2.
  14. Beltran, M., Tavares, M., Justin, N., Khandelwal, G., Ambrose, J., Foster, B. M., Worlock, K. B., Tvardovskiy, A., Kunzelmann, S., Herrero, J., Bartke, T., Gamblin, S. J., Wilson, J. R., and Jenner, R. G. (2019) G-tract RNA removes Polycomb repressive complex 2 from genes, Nat. Struct. Mol. Biol., 26, 899-909, https://doi.org/10.1038/s41594-019-0293-z.
  15. Tsagakis, I., Douka, K., Birds, I., and Aspden, J. L. (2020) Long non‐coding RNAs in development and disease: conservation to mechanisms, J. Pathol., 250, 480-495, https://doi.org/10.1002/path.5405.
  16. Islam, Z., Saravanan, B., Walavalkar, K., Farooq, U., Singh, A. K., Radhakrishnan, S., Thakur, J., Pandit, A., Henikoff, S., and Notani, D. (2023) Active enhancers strengthen insulation by RNA-mediated CTCF binding at chromatin domain boundaries, Genome Res., 33, 1-17, https://doi.org/10.1101/gr.276643.122.
  17. Ren, C., Han, H., Pan, J., Chang, Q., Wang, W., Guo, X., and Bian, J. (2022) DLGAP1-AS2 promotes human colorectal cancer progression through trans-activation of Myc, Mamm. Genome, 33, 672-683, https://doi.org/10.1007/s00335-022-09963-y.
  18. Tsai, P.-F., Dell’Orso, S., Rodriguez, J., Vivanco, K. O., Ko, K.-D., Jiang, K., Juan, A. H., Sarshad, A. A., Vian, L., Tran, M., Wangsa, D., Wang, A. H., Perovanovic, J., Anastasakis, D., Ralston, E., Ried, T., Sun, H.-W., Hafner, M., Larson, D. R., and Sartorelli, V. (2018) A muscle-specific enhancer RNA mediates cohesin recruitment and regulates transcription in trans, Mol. Cell, 71, 129-141.e8, https://doi.org/10.1016/j.molcel.2018.06.008.
  19. Abdalla, M. O. A., Yamamoto, T., Maehara, K., Nogami, J., Ohkawa, Y., Miura, H., Poonperm, R., Hiratani, I., Nakayama, H., Nakao, M., and Saitoh, N. (2019) The Eleanor ncRNAs activate the topological domain of the ESR1 locus to balance against apoptosis, Nat. Commun., 10, 3778, https://doi.org/10.1038/s41467-019-11378-4.
  20. Yeo, S. J., Ying, C., Fullwood, M. J., and Tergaonkar, V. (2023) Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains, Trends Genet., 39, 217-232, https://doi.org/10.1016/j.tig.2022.12.003.
  21. Quinodoz, S. A., Jachowicz, J. W., Bhat, P., Ollikainen, N., Banerjee, A. K., Goronzy, I. N., Blanco, M. R., Chovanec, P., Chow, A., Markaki, Y., Thai, J., Plath, K., and Guttman, M. (2021) RNA promotes the formation of spatial compartments in the nucleus, Cell, 184, 5775-5790.e30, https://doi.org/10.1016/j.cell.2021.10.014.
  22. Loda, A., Collombet, S., and Heard, E. (2022) Gene regulation in time and space during X-chromosome inactivation, Nat. Rev. Mol. Cell Biol., 23, 231-249, https://doi.org/10.1038/s41580-021-00438-7.
  23. Winkler, L., Jimenez, M., Zimmer, J. T., Williams, A., Simon, M. D., and Dimitrova, N. (2022) Functional elements of the cis-regulatory lincRNA-p21, Cell Rep., 39, 110687, https://doi.org/10.1016/j.celrep.2022.110687.
  24. Engreitz, J. M., Haines, J. E., Perez, E. M., Munson, G., Chen, J., Kane, M., McDonel, P. E., Guttman, M., and Lander, E. S. (2016) Local regulation of gene expression by lncRNA promoters, transcription and splicing, Nature, 539, 452-455, https://doi.org/10.1038/nature20149.
  25. Gil, N., Perry, R. B.-T., Mukamel, Z., Tuck, A., Bühler, M., and Ulitsky, I. (2023) Complex regulation of Eomes levels mediated through distinct functional features of the Meteor long non-coding RNA locus, Cell Rep., 42, 112569, https://doi.org/10.1016/j.celrep.2023.112569.
  26. Carrieri, C., Cimatti, L., Biagioli, M., Beugnet, A., Zucchelli, S., Fedele, S., Pesce, E., Ferrer, I., Collavin, L., Santoro, C., Forrest, A. R. R., Carninci, P., Biffo, S., Stupka, E., and Gustincich, S. (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat, Nature, 491, 454-457, https://doi.org/10.1038/nature11508.
  27. Schein, A., Zucchelli, S., Kauppinen, S., Gustincich, S., and Carninci, P. (2016) Identification of antisense long noncoding RNAs that function as SINEUPs in human cells, Sci. Rep., 6, 33605, https://doi.org/10.1038/srep33605.
  28. Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A., and Bozzoni, I. (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA, Cell, 147, 358-369, https://doi.org/10.1016/j.cell.2011.09.028.
  29. Grelet, S., Link, L. A., Howley, B., Obellianne, C., Palanisamy, V., Gangaraju, V. K., Diehl, J. A., and Howe, P. H. (2017) A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression, Nat. Cell Biol., 19, 1105-1115, https://doi.org/10.1038/ncb3595.
  30. Wang, Y., Xu, Z., Jiang, J., Xu, C., Kang, J., Xiao, L., Wu, M., Xiong, J., Guo, X., and Liu, H. (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal, Dev. Cell, 25, 69-80, https://doi.org/10.1016/j.devcel.2013.03.002.
  31. Xia, Q., Shen, J., Wang, Q., Ke, Y., Yan, Q., Li, H., Zhang, D., and Duan, S. (2022) LINC00324 in cancer: Regulatory and therapeutic implications, Front. Oncol., 12, https://doi.org/10.3389/fonc.2022.1039366.
  32. Chureau, C., Prissette, M., Bourdet, A., Barbe, V., Cattolico, L., Jones, L., Eggen, A., Avner, P., and Duret, L. (2002) Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine, Genome Res., 12, 894-908, https://doi.org/10.1101/gr.152902.
  33. Johnston, C. M., Newall, A. E. T., Brockdorff, N., and Nesterova, T. B. (2002) Enox, a novel gene that maps 10 kb upstream of Xist and partially escapes X inactivation, Genomics, 80, 236-244, https://doi.org/10.1006/geno.2002.6819.
  34. Chow, J. C., Hall, L. L., Clemson, C. M., Lawrence, J. B., and Brown, C. J. (2003) Characterization of expression at the human XIST locus in somatic, embryonal carcinoma, and transgenic cell lines, Genomics, 82, 309-322, https://doi.org/10.1016/S0888-7543(03)00170-8.
  35. Romito, A., and Rougeulle, C. (2011) Origin and evolution of the long non-coding genes in the X-inactivation center, Biochimie, 93, 1935-1942, https://doi.org/10.1016/j.biochi.2011.07.009.
  36. Elisaphenko, E. A., Kolesnikov, N. N., Shevchenko, A. I., Rogozin, I. B., Nesterova, T. B., Brockdorff, N., and Zakian, S. M. (2008) A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements, PLoS One, 3, e2521, https://doi.org/10.1371/journal.pone.0002521.
  37. Oh, H. J., Aguilar, R., Kesner, B., Lee, H.-G., Kriz, A. J., Chu, H.-P., and Lee, J. T. (2021) RNA regulates CTCF anchor site selection and formation of chromosome loops, Cell, 184, 6157-6173.e24, https://doi.org/10.1016/j.cell.2021.11.012.
  38. Oo, J. A., Warwick, T., Pálfi, K., Lam, F., McNicoll, F., Prieto-Garcia, C., Günther, S., Cao, C., Zhou, Y., Gavrilov, A. A., Razin, S. V., Cabrera-Orefice, A., Wittig, I., Pullamsetti, S. S., Kurian, L., Gilsbach, R., Schulz, M. H., Dikic, I., Müller-McNicoll, M., Brandes, R. P., and Leisegang, M. S. (2025) Long non-coding RNAs direct the SWI/SNF complex to cell type-specific enhancers, Nat. Commun., 16, 131, https://doi.org/10.1038/s41467-024-55539-6.
  39. Xiong, H., Zhang, W., Xie, M., Chen, R., Chen, H., and Lin, Q. (2024) Long non-coding RNA JPX promotes endometrial carcinoma progression via janus kinase 2/signal transducer and activator of transcription 3, Front. Oncol., 14, https://doi.org/10.3389/fonc.2024.1340050.
  40. Duret, L., Chureau, C., Samain, S., Weissenbach, J., and Avner, P. (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene, Science, 312, 1653-1655, https://doi.org/10.1126/science.1126316.
  41. Hezroni, H., Ben-Tov Perry, R., Meir, Z., Housman, G., Lubelsky, Y., and Ulitsky, I. (2017) A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes, Genome Biol., 18, 162, https://doi.org/10.1186/s13059-017-1293-0.
  42. Kolesnikov, N. N., and Elisaphenko, E. A. (2010) Comparative organization and the origin of noncoding regulatory RNA genes from X-chromosome inactivation center of human and mouse, Russ. J. Genet., 46, 1223-1228, https://doi.org/10.1134/S1022795410100200.
  43. Karner, H., Webb, C.-H., Carmona, S., Liu, Y., Lin, B., Erhard, M., Chan, D., Baldi, P., Spitale, R. C., and Sun, S. (2020) Functional conservation of LncRNA JPX despite sequence and structural divergence, J. Mol. Biol., 432, 283-300, https://doi.org/10.1016/j.jmb.2019.09.002.
  44. Rosspopoff, O., Cazottes, E., Huret, C., Loda, A., Collier, A. J., Casanova, M., Rugg-Gunn, P. J., Heard, E., Ouimette, J.-F., and Rougeulle, C. (2023) Species-specific regulation of XIST by the JPX/FTX orthologs, Nucleic Acids Res., 51, 2177-2194, https://doi.org/10.1093/nar/gkad029.
  45. Cazottes, E., Alfeghaly, C., Rognard, C., Loda, A., Castel, G., Villacorta, L., Dong, M., Heard, E., Aksoy, I., Savatier, P., Morey, C., and Rougeulle, C. (2023) Extensive remodelling of XIST regulatory networks during primate evolution, bioRxiv, https://doi.org/10.1101/2023.12.04.569904.
  46. Shevchenko, A. I., Malakhova, A. A., Elisaphenko, E. A., Mazurok, N. A., Nesterova, T. B., Brockdorff, N., and Zakian, S. M. (2011) Variability of sequence surrounding the Xist gene in rodents suggests taxon-specific regulation of X chromosome inactivation, PLoS One, 6, e22771, https://doi.org/10.1371/journal.pone.0022771.
  47. Елисафенко Е.А., Шевченко А.И., Закиян С.М. (2016) Профили экспрессии нетранслируемых РНК в центре инактивации у мышевидных грызунов, Гены Клетки, 11, 82-86.
  48. Tian, D., Sun, S., and Lee, J. T. (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation, Cell, 143, 390-403, https://doi.org/10.1016/j.cell.2010.09.049.
  49. Sun, S., Del Rosario, B. C., Szanto, A., Ogawa, Y., Jeon, Y., and Lee, J. T. (2013) Jpx RNA activates Xist by evicting CTCF, Cell, 153, 1537-1551, https://doi.org/10.1016/j.cell.2013.05.028.
  50. Carmona, S., Lin, B., Chou, T., Arroyo, K., and Sun, S. (2018) LncRNA Jpx induces Xist expression in mice using both trans and cis mechanisms, PLoS Genet., 14, e1007378, https://doi.org/10.1371/journal.pgen.1007378.
  51. Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E., and Wiehe, T. (2012) The chromatin insulator CTCF and the emergence of metazoan diversity, Proc. Natl. Acad. Sci. USA, 109, 17507-17512, https://doi.org/10.1073/pnas.1111941109.
  52. Schwalie, P. C., Ward, M. C., Cain, C. E., Faure, A. J., Gilad, Y., Odom, D. T., and Flicek, P. (2013) Co-binding by YY1 identifies the transcriptionally active, highly conserved set of CTCF-bound regions in primate genomes, Genome Biol., 14, R148, https://doi.org/10.1186/gb-2013-14-12-r148.
  53. Liu, F., Wu, D., and Wang, X. (2019) Roles of CTCF in conformation and functions of chromosome, Semin. Cell Dev. Biol., 90, 168-173, https://doi.org/10.1016/j.semcdb.2018.07.021.
  54. Moore, J. M., Rabaia, N. A., Smith, L. E., Fagerlie, S., Gurley, K., Loukinov, D., Disteche, C. M., Collins, S. J., Kemp, C. J., Lobanenkov, V. V., and Filippova, G. N. (2012) Loss of maternal CTCF is associated with peri-implantation lethality of Ctcf null embryos, PloS One, 7, e34915, https://doi.org/10.1371/journal.pone.0034915.
  55. Heath, H., Ribeiro de Almeida, C., Sleutels, F., Dingjan, G., van de Nobelen, S., Jonkers, I., Ling, K.-W., Gribnau, J., Renkawitz, R., Grosveld, F., Hendriks, R. W., and Galjart, N. (2008) CTCF regulates cell cycle progression of αβ T cells in the thymus, EMBO J., 27, 2839-2850, https://doi.org/10.1038/emboj.2008.214.
  56. Gomez-Velazquez, M., Badia-Careaga, C., Lechuga-Vieco, A. V., Nieto-Arellano, R., Tena, J. J., Rollan, I., Alvarez, A., Torroja, C., Caceres, E. F., Roy, A. R., Galjart, N., Delgado-Olguin, P., Sanchez-Cabo, F., Enriquez, J. A., Gomez-Skarmeta, J. L., and Manzanares, M. (2017) CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart, PLoS Genet., 13, e1006985, https://doi.org/10.1371/journal.pgen.1006985.
  57. Oudelaar, A. M., and Higgs, D. R. (2021) The relationship between genome structure and function, Nat. Rev. Genet., 22, 154-168, https://doi.org/10.1038/s41576-020-00303-x.
  58. Merkenschlager, M., and Nora, E. P. (2016) CTCF and cohesin in genome folding and transcriptional gene regulation, Annu. Rev. Genomics Hum. Genet., 17, 17-43, https://doi.org/10.1146/annurev-genom-083115-022339.
  59. Saldaña-Meyer, R., Rodriguez-Hernaez, J., Escobar, T., Nishana, M., Jácome-López, K., Nora, E. P., Bruneau, B. G., Tsirigos, A., Furlan-Magaril, M., Skok, J., and Reinberg, D. (2019) RNA interactions are essential for CTCFmediated genome organization, Mol. Cell, 76, 412-422.e5, https://doi.org/10.1016/j.molcel.2019.08.015.
  60. Hansen, A. S., Hsieh, T.-H. S., Cattoglio, C., Pustova, I., Saldaña-Meyer, R., Reinberg, D., Darzacq, X., and Tjian, R. (2019) Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF, Mol. Cell, 76, 395-411.e13, https://doi.org/10.1016/j.molcel.2019.07.039.
  61. Sen, D., Maniyadath, B., Chowdhury, S., Kaur, A., Khatri, S., Chakraborty, A., Mehendale, N., Nadagouda, S., Sandra, U. S., Kamat, S. S., and Kolthur-Seetharam, U. (2023) Metabolic regulation of CTCF expression and chromatin association dictates starvation response in mice and flies, iScience, 26, 107128, https://doi.org/10.1016/j.isci.2023.107128.
  62. Ma, X., Yuan, T., Yang, C., Wang, Z., Zang, Y., Wu, L., and Zhuang, L. (2017) X-inactive-specific transcript of peripheral blood cells is regulated by exosomal Jpx and acts as a biomarker for female patients with hepatocellular carcinoma, Ther. Adv. Med. Oncol., 9, 665-677, https://doi.org/10.1177/1758834017731052.
  63. Gu, J., Chen, J., Yin, Q., Dong, M., Zhang, Y., Chen, M., Chen, X., Min, J., He, X., Tan, Y., Zheng, L., Jiang, H., Wang, B., Li, X., and Chen, H. (2024) lncRNA JPX-enriched chromatin microenvironment mediates vascular smooth muscle cell senescence and promotes atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 44, 156-176, https://doi.org/10.1161/ATVBAHA.122.319250.
  64. Alver, B. H., Kim, K. H., Lu, P., Wang, X., Manchester, H. E., Wang, W., Haswell, J. R., Park, P. J., and Roberts, C. W. M. (2017) The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers, Nat. Commun., 8, 14648, https://doi.org/10.1038/ncomms14648.
  65. Wolf, B. K., Zhao, Y., McCray, A., Hawk, W. H., Deary, L. T., Sugiarto, N. W., LaCroix, I. S., Gerber, S. A., Cheng, C., and Wang, X. (2023) Cooperation of chromatin remodeling SWI/SNF complex and pioneer factor AP-1 shapes 3D enhancer landscapes, Nat. Struct. Mol. Biol., 30, 10-21, https://doi.org/10.1038/s41594-022-00880-x.
  66. Bao, J., Zhang, C., Chen, J., Xuan, H., Wang, C., Wang, S., Yin, J., Liu, Y., Li, D., and Xu, T. (2023) LncRNA JPX targets SERCA2a to mitigate myocardial ischemia/reperfusion injury by binding to EZH2, Exp. Cell Res., 427, 113572, https://doi.org/10.1016/j.yexcr.2023.113572.
  67. Luo, D., Tang, H., Tan, L., Zhang, L., Wang, L., Cheng, Q., Lei, X., and Wu, J. (2024) lncRNA JPX promotes tumor progression by interacting with and destabilizing YTHDF2 in cutaneous melanoma, Mol. Cancer Res., 22, 524-537, https://doi.org/10.1158/1541-7786.MCR-23-0701.
  68. Li, X. D., Wang, M. J., Zheng, J. L., Wu, Y. H., Wang, X., and Jiang, X. B. (2021) Long noncoding RNA just proximal to X-inactive specific transcript facilitates aerobic glycolysis and temozolomide chemoresistance by promoting stability of PDK1 mRNA in an m6A-dependent manner in glioblastoma multiforme cells, Cancer Sci., 112, 4543-4552, https://doi.org/10.1111/cas.15072.
  69. Shang, R., Lee, S., Senavirathne, G., and Lai, E. C. (2023) microRNAs in action: biogenesis, function and regulation, Nat. Rev. Genet., 24, 816-833, https://doi.org/10.1038/s41576-023-00611-y.
  70. O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation, Front. Endocrinol., 9, 402, https://doi.org/10.3389/fendo.2018.00402.
  71. Agrawal, A., and Vindal, V. (2024) Competing endogenous RNAs in head and neck squamous cell carcinoma: a review, Brief. Funct. Genomics, 23, 335-348, https://doi.org/10.1093/bfgp/elad049.
  72. Asadi, M. R., Abed, S., Kouchakali, G., Fattahi, F., Sabaie, H., Moslehian, M. S., Sharifi-Bonab, M., Hussen, B. M., Taheri, M., Ghafouri-Fard, S., and Rezazadeh, M. (2023) Competing endogenous RNA (ceRNA) networks in Parkinson’s disease: a systematic review, Front. Cell. Neurosci., 17, 1044634, https://doi.org/10.3389/fncel.2023.1044634.
  73. Xu, J., Xu, J., Liu, X., and Jiang, J. (2022) The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer, Cell Death Discov., 8, 287, https://doi.org/10.1038/s41420-022-01061-x.
  74. Pan, J., Fang, S., Tian, H., Zhou, C., Zhao, X., Tian, H., He, J., Shen, W., Meng, X., Jin, X., and Gong, Z. (2020) lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling, Mol. Cancer, 19, 9, https://doi.org/10.1186/s12943-020-1133-9.
  75. Sun, M., Zhan, N., Yang, Z., Zhang, X., Zhang, J., Peng, L., Luo, Y., Lin, L., Lou, Y., You, D., Qiu, T., Liu, Z., Wang, Q., Liu, Y., Sun, P., Yu, M., and Wang, H. (2024) Cuproptosis-related lncRNA JPX regulates malignant cell behavior and epithelial-immune interaction in head and neck squamous cell carcinoma via miR-193b-3p/PLAU axis, Int. J. Oral Sci., 16, 63, https://doi.org/10.1038/s41368-024-00314-y.
  76. Han, X., and Liu, Z. (2021) Long non-coding RNA JPX promotes gastric cancer progression by regulating CXCR6 and autophagy via inhibiting miR-197, Mol. Med. Rep., 23, 60, https://doi.org/10.3892/mmr.2020.11698.
  77. Jin, M., Ren, J., Luo, M., You, Z., Fang, Y., Han, Y., Li, G., and Liu, H. (2020) Long non-coding RNA JPX correlates with poor prognosis and tumor progression in non-small-cell lung cancer by interacting with miR-145-5p and CCND2, Carcinogenesis, 41, 634-645, https://doi.org/10.1093/carcin/bgz125.
  78. Chen, X., Yang, J., and Wang, Y. (2020) LncRNA JPX promotes cervical cancer progression by modulating miR-25-3p/SOX4 axis, Cancer Cell Int., 20, 441, https://doi.org/10.1186/s12935-020-01486-3.
  79. He, Y., Hua, R., Yang, Y., Li, B., Guo, X., and Li, Z. (2022) LncRNA JPX promotes esophageal squamous cell carcinoma progression by targeting miR-516b-5p/VEGFA axis, Cancers, 14, 2713, https://doi.org/10.3390/cancers14112713.
  80. Yao, Y., Chen, S., Lu, N., Yin, Y., and Liu, Z. (2021) LncRNA JPX overexpressed in oral squamous cell carcinoma drives malignancy via miR-944/CDH2 axis, Oral Dis., 27, 924-933, https://doi.org/10.1111/odi.13626.
  81. Kuang, Y., Shen, W., Zhu, H., Huang, H., Zhou, Q., Yin, W., Zhou, Y., Cao, Y., Wang, L., Li, X., Ren, C., and Jiang, X. (2022) The role of lncRNA just proximal to XIST (JPX) in human disease phenotypes and RNA methylation: the novel biomarker and therapeutic target potential, Biomed. Pharmacother., 155, 113753, https://doi.org/10.1016/j.biopha.2022.113753.
  82. Wang, Y., Bai, H., Jiang, M., Zhou, C., and Gong, Z. (2023) Emerging role of long non-coding RNA JPX in malignant processes and potential applications in cancers, Chin. Med. J. (Engl.), 136, 757-766, https://doi.org/10.1097/CM9.0000000000002392.
  83. Mosca, N., Pezzullo, M., De Leo, I., Truda, A., Marchese, G., Russo, A., and Potenza, N. (2024) A novel ceRNET relying on the lncRNA JPX, miR-378a-3p, and its mRNA targets in lung cancer, Cancers, 16, 1526, https://doi.org/10.3390/cancers16081526.
  84. Xiong, W., Liu, D., Chen, X., Liu, L., and Xiao, W. (2022) lncRNA JPX modulates malignant progress of osteosarcoma through targeting miR-33a-5p and PNMA1 regulatory loop, Transl. Oncol., 25, 101504, https://doi.org/10.1016/j.tranon.2022.101504.
  85. Yang, H., Wang, G., Liu, J., Lin, M., Chen, J., Fang, Y., Li, Y., Cai, W., and Zhan, D. (2021) LncRNA JPX regulates proliferation and apoptosis of nucleus pulposus cells by targeting the miR-18a-5p/HIF-1α/Hippo-YAP pathway, Biochem. Biophys. Res. Commun., 566, 16-23, https://doi.org/10.1016/j.bbrc.2021.05.075.
  86. Xu, T., Zhang, Y., Liao, G., Xuan, H., Yin, J., Bao, J., Liu, Y., and Li, D. (2023) Luteolin pretreatment ameliorates myocardial ischemia/reperfusion injury by lncRNA-JPX/miR-146b axis, Anal. Cell. Pathol. Amst., 2023, 4500810,https://doi.org/10.1155/2023/4500810.
  87. Ren, Z., Tang, L., Ding, Z., Song, J., Zheng, H., and Li, D. (2022) Knockdown of lncRNA JPX suppresses IL-1β-stimulated injury in chondrocytes through modulating an miR-25-3p/PPID axis, Oncol. Lett., 24, 1-9, https://doi.org/10.3892/ol.2022.13508.
  88. Chen, Z., Ke, X., Wang, X., Kang, H., and Hong, S. (2022) LncRNA JPX contributes to Treg/Th17 imbalance in allergic rhinitis via targeting the miR-378g/CCL5 axis, Immunopharmacol. Immunotoxicol., 44, 519-524, https://doi.org/10.1080/08923973.2022.2055566.
  89. Xing, Y., Wen, X., Ding, X., Fan, J., Chai, P., Jia, R., Ge, S., Qian, G., Zhang, H., and Fan, X. (2017) CANT1 lncRNA triggers efficient therapeutic efficacy by correcting aberrant lncing cascade in malignant uveal melanoma, Mol. Ther., 25, 1209-1221, https://doi.org/10.1016/j.ymthe.2017.02.016.
  90. Dahariya, S., Raghuwanshi, S., Sangeeth, A., Malleswarapu, M., Kandi, R., and Gutti, R. K. (2021) Megakaryoblastic leukemia: a study on novel role of clinically significant long non-coding RNA signatures in megakaryocyte development during treatment with phorbol ester, Cancer Immunol. Immunother., 70, 3477-3488, https://doi.org/10.1007/s00262-021-02937-0.
  91. Ma, W., Wang, H., Jing, W., Zhou, F., Chang, L., Hong, Z., Liu, H., Liu, Z., and Yuan, Y. (2017) Downregulation of long non-coding RNAs JPX and XIST is associated with the prognosis of hepatocellular carcinoma, Clin. Res. Hepatol. Gastroenterol., 41, 163-170, https://doi.org/10.1016/j.clinre.2016.09.002.
  92. Lin, X., Huang, Z., Chen, X., Wu, F., and Wu, W. (2018) XIST induced by JPX suppresses hepatocellular carcinoma by sponging miR-155-5p, Yonsei Med. J., 59, 816-826, https://doi.org/10.3349/ymj.2018.59.7.816.
  93. Sajjadi, R. S., Modarressi, M. H., and Tabatabaiefar, M. A. (2021) JPX and LINC00641 ncRNAs expression in prostate tissue: a case-control study, Res. Pharm. Sci., 16, 493-504, https://doi.org/10.4103/1735-5362.323916.
  94. Huang, Y.-S., Chang, C.-C., Lee, S.-S., Jou, Y.-S., and Shih, H.-M. (2016) Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression, Oncotarget, 7, 43256-43266, https://doi.org/10.18632/oncotarget.9673.
  95. Li, J., Feng, L., Tian, C., Tang, Y.-L., Tang, Y., and Hu, F.-Q. (2018) Long noncoding RNA-JPX predicts the poor prognosis of ovarian cancer patients and promotes tumor cell proliferation, invasion and migration by the PI3K/Akt/mTOR signaling pathway, Eur. Rev. Med. Pharmacol. Sci., 22, 8135-8144, https://doi.org/10.26355/eurrev_201812_16505.
  96. Gál, Z., Gézsi, A., Semsei, Á. F., Nagy, A., Sultész, M., Csoma, Z., Tamási, L., Gálffy, G., and Szalai, C. (2020) Investigation of circulating lncRNAs as potential biomarkers in chronic respiratory diseases, J. Transl. Med., 18, 422, https://doi.org/10.1186/s12967-020-02581-9.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».