РОЛЬ НЕГОМОЛОГИЧНОГО СОЕДИНЕНИЯ КОНЦОВ РАЗРЫВОВ ДНК И ОПОСРЕДОВАННОГО МИКРОГОМОЛОГИЕЙ СОЕДИНЕНИЯ КОНЦОВ РАЗРЫВОВ ДНК В ХРОМОСОМНЫХ ПЕРЕСТРОЙКАХ
- Авторы: Ломов Н.А1, Николаев Н.А1,2, Вьюшков В.С1, Рубцов М.А1,3
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова
- Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
- Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет), Центр индустриальных технологий и предпринимательства
- Выпуск: Том 90, № 11 (2025)
- Страницы: 1561-1578
- Раздел: Статьи
- URL: https://journals.rcsi.science/0320-9725/article/view/362439
- DOI: https://doi.org/10.7868/S3034529425110034
- ID: 362439
Цитировать
Аннотация
Об авторах
Н. А Ломов
Московский государственный университет имени М.В. Ломоносова
Email: lomov13@gmail.com
119234 Москва, Россия
Н. А Николаев
Московский государственный университет имени М.В. Ломоносова; Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН119234 Москва, Россия; 117437 Москва, Россия
В. С Вьюшков
Московский государственный университет имени М.В. Ломоносова119234 Москва, Россия
М. А Рубцов
Московский государственный университет имени М.В. Ломоносова; Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский Университет), Центр индустриальных технологий и предпринимательства119234 Москва, Россия; 119435 Москва, Россия
Список литературы
- Greaves, M. (2015) When one mutation is all it takes, Cancer Cell, 27, 433-434, https://doi.org/10.1016/j.ccell.2015.03.016.
- Andersson, A. K., Ma, J., Wang, J., Chen, X., Gedman, A. L., Dang, J., Nakitandwe, J., Holmfeldt, L., Parker, M., Easton, J., Huether, R., Kriwacki, R., Rusch, M., Wu, G., Li, Y., Mulder, H., Raimondi, S., Pounds, S., Kang, G., Shi, L., Becksfort, J., Gupta, P., Payne-Turner, D., Vadodaria, B., Boggs, K., et al. (2015) The landscape of so-matic mutations in infant MLL-rearranged acute lymphoblastic leukemias, Nat. Genet., 47, 330-337, https://doi.org/10.1038/ng.3230.
- Bunting, S. F., and Nussenzweig, A. (2013) End-joining, translocations and cancer, Nat. Rev. Cancer, 13, 443-454, https://doi.org/10.1038/nrc3537.
- Beucher, A., Birraux, J., Tchouandong, L., Barton, O., Shibata, A., Conrad, S., Goodarzi, A. A., Krempler, A., Jeggo, P. A., and Löbrich, M. (2009) ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2, EMBO J., 28, 3413-3427, https://doi.org/10.1038/emboj.2009.276.
- Karanam, K., Kafri, R., Loewer, A., and Lahav, G. (2012) Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid-S phase, Mol. Cell, 47, 320-329, https://doi.org/10.1016/j.molcel.2012.05.052.
- Rothkamm, K., Krüger, I., Thompson, L. H., and Löbrich, M. (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle, Mol. Cell Biol., 23, 5706-5715, https://doi.org/10.1128/MCB.23.16. 5706-5715.2003.
- Shahar, O. D., Raghu Ram, E. V. S., Shimshoni, E., Hareli, S., Meshorer, E., and Goldberg, M. (2012) Live imaging of induced and controlled DNA double-strand break formation reveals extremely low repair by homologous recombination in human cells, Oncogene, 31, 3495-3504, https://doi.org/10.1038/onc.2011.516.
- Fishman-Lobell, J., Rudin, N., and Haber, J. E. (1992) Two alternative pathways of double-strand break re-pair that are kinetically separable and independently modulated, Mol. Cell Biol., 12, 1292-1303, https://doi.org/ 10.1128/MCB.12.3.1292.
- Bhargava, R., Onyango, D. O., and Stark, J. M. (2016) Regulation of single-strand annealing and its role in ge-nome maintenance, Trends Genet., 32, 566-575, https://doi.org/10.1016/j.tig.2016.06.007.
- Li, W., and Ma, H. (2006) Double-stranded DNA breaks and gene functions in recombination and meiosis, Cell Res., 16, 402-412, https://doi.org/10.1038/sj.cr.7310052.
- Sanchez, A., Reginato, G., and Cejka, P. (2021) Crossover or non-crossover outcomes: tailored processing of homologous recombination intermediates, Curr. Opin. Genet. Dev., 71, 39-47, https://doi.org/10.1016/j.gde. 2021.06.012.
- Sun, Y., McCorvie, T. J., Yates, L. A., and Zhang, X. (2020) Structural basis of homologous recombination, Cell Mol. Life Sci., 77, 3-18, https://doi.org/10.1007/s00018-019-03365-1.
- Al-Zain, A. M., and Symington, L. S. (2021) The dark side of homology-directed repair, DNA Repair (Amst), 106, 103181, https://doi.org/10.1016/j.dnarep.2021.103181.
- Ceccaldi, R., and Cejka, P. (2025) Mechanisms and regulation of DNA end resection in the maintenance of ge-nome stability, Nat. Rev. Mol. Cell Biol., 26, 586-599, https://doi.org/10.1038/s41580-025-00841-4.
- Van de Kamp, G., Heemskerk, T., Kanaar, R., and Essers, J. (2021) DNA double strand break repair path-ways in response to different types of ionizing radiation, Front. Genet., 12, 738230, https://doi.org/10.3389/fgene.2021.738230.
- Blasiak, J. (2021) Single-strand annealing in cancer, Int. J. Mol. Sci., 22, 2167, https://doi.org/10.3390/ijms22042167.
- Vu, T. V., Das, S., Nguyen, C. C., Kim, J., and Kim, J.-Y. (2022) Single-strand annealing: Molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing, Biotechnol. J., 17, e2100413, https://doi.org/10.1002/biot.202100413.
- Shibata, A. (2017) Regulation of repair pathway choice at two-ended DNA double-strand breaks, Mutat. Res., 803- 805, 51-55, https://doi.org/10.1016/j.mrfmmm.2017.07.011.
- Buehl, C. J., Goff, N. J., Hardwick, S. W., Gellert, M., Blundell, T. L., Yang, W., Chaplin, A. K., and Meek, K. (2023) Two distinct long-range synaptic complexes promote different aspects of end processing prior to repair of DNA breaks by non-homologous end joining, Mol. Cell, 83, 698-714.e4, https://doi.org/10.1016/j.molcel.2023.01.012.
- Zhao, F., Kim, W., Kloeber, J. A., and Lou, Z. (2020) DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells, Exp. Mol. Med., 52, 1705-1714, https://doi.org/10.1038/s12276-020-00519-1.
- Grundy, G. J., Moulding, H. A., Caldecott, K. W., and Rulten, S. L. (2014) One ring to bring them all – the role of Ku in mammalian non-homologous end joining, DNA Repair (Amst), 17, 30-38, https://doi.org/10.1016/j.dnarep.2014.02.019.
- Thacker, J., and Zdzienicka, M. Z. (2003) The mammalian XRCC genes: their roles in DNA repair and genetic stability, DNA Repair, 2, 655-672, https://doi.org/10.1016/S1568-7864(03)00062-4.
- Frit, P., Ropars, V., Modesti, M., Charbonnier, J. B., and Calsou, P. (2019) Plugged into the Ku-DNA hub: The NHEJ network, Progr. Biophys. Mol. Biol., 147, 62-76, https://doi.org/10.1016/j.pbiomolbio.2019.03.001.
- Davis, A. J., Chen, B. P. C., and Chen, D. J. (2014) DNA-PK: a dynamic enzyme in a versatile DSB repair pathway, DNA Repair (Amst), 17, 21-29, https://doi.org/10.1016/j.dnarep.2014.02.020.
- Chaplin, A. K., Hardwick, S. W., Stavridi, A. K., Buehl, C. J., Goff, N. J., Ropars, V., Liang, S., De Oliveira, T. M., Chirgadze, D. Y., Meek, K., Charbonnier, J.-B., and Blundell, T. L. (2021) Cryo-EM of NHEJ supercomplexes pro-vides insights into DNA repair, Mol. Cell, 81, 3400-3409.e3, https://doi.org/10.1016/j.molcel.2021.07.005.
- DeFazio, L. G., Stansel, R. M., Griffith, J. D., and Chu, G. (2002) Synapsis of DNA ends by DNA-dependent protein kinase, EMBO J., 21, 3192-3200, https://doi.org/10.1093/emboj/cdf299.
- Graham, T. G. W., Walter, J. C., and Loparo, J. J. (2016) Two-stage synapsis of DNA ends during non-homologous end joining, Mol. Cell, 61, 850-858, https://doi.org/10.1016/j.molcel.2016.02.010.
- Liu, L., Chen, X., Li, J., Wang, H., Buehl, C. J., Goff, N. J., Meek, K., Yang, W., and Gellert, M. (2022) Autophos-phorylation transforms DNA-PK from protecting to processing DNA ends, Mol. Cell, 82, 177-189.e4, https://doi.org/10.1016/j.molcel.2021.11.025.
- Chen, S., Lee, L., Naila, T., Fishbain, S., Wang, A., Tomkinson, A. E., Lees-Miller, S. P., and He, Y. (2021) Structur-al basis of long-range to short-range synaptic transition in NHEJ, Nature, 593, 294-298, https://doi.org/10.1038/s41586-021-03458-7.
- Stinson, B. M., Moreno, A. T., Walter, J. C., and Loparo, J. J. (2020) A mechanism to minimize errors during non-homologous end joining, Mol. Cell, 77, 1080-1091, https://doi.org/10.1016/j.molcel.2019.11.018.
- Jiang, W., Crowe, J. L., Liu, X., Nakajima, S., Wang, Y., Li, C., Lee, B. J., Dubois, R. L., Liu, C., Yu, X., Lan, L., and Zha, S. (2015) Differential phosphorylation of DNA-PKcs regulates the interplay between end-pro-cessing and end-ligation during nonhomologous end-joining, Mol. Cell, 58, 172-185, https://doi.org/10.1016/j.molcel.2015.02.024.
- Menon, V., and Povirk, L. F. (2016) End-processing nucleases and phosphodiesterases: An elite supporting cast for the non-homologous end joining pathway of DNA double-strand break repair, DNA Repair, 43, 57-68, https://doi.org/10.1016/j.dnarep.2016.05.011.
- Moon, A. F., Garcia-Diaz, M., Bebenek, K., Davis, B. J., Zhong, X., Ramsden, D. A., Kunkel, T. A., and Pedersen, L. C. (2007) Structural insight into the substrate specificity of DNA Polymerase mu, Nat. Struct. Mol. Biol., 14, 45-53, https://doi.org/10.1038/nsmb1180.
- 34. Chang, H. H. Y., Watanabe, G., Gerodimos, C. A., Ochi, T., Blundell, T. L., Jackson, S. P., and Lieber, M. R. (2016) Different DNA end configurations dictate which NHEJ components are most important for joining efficiency, J. Biol. Chem., 291, 24377-24389, https://doi.org/10.1074/jbc.M116.752329.
- Ma, Y., Pannicke, U., Schwarz, K., and Lieber, M. R. (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination, Cell, 108, 781-794, https://doi.org/10.1016/S0092-8674(02)00671-2.
- Volk, T., Pannicke, U., Reisli, I., Bulashevska, A., Ritter, J., Björkman, A., Schäffer, A. A., Fliegauf, M., Sayar, E. H., Salzer, U., Fisch, P., Pfeifer, D., Di Virgilio, M., Cao, H., Yang, F., Zimmermann, K., Keles, S., Caliskaner, Z., Güner, S., Schindler, D., Hammarström, L., Rizzi, M., Hummel, M., Pan-Hammarström, Q., Schwarz, K., et al. (2015) DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency, Hum. Mol. Genet., 24, 7361-7372, https://doi.org/10.1093/hmg/ddv437.
- Pannunzio, N. R., Watanabe, G., and Lieber, M. R. (2018) Nonhomologous DNA end-joining for repair of DNA double-strand breaks, J. Biol. Chem., 293, 10512-10523, https://doi.org/10.1074/jbc.TM117.000374.
- Goff, N. J., Mikhova, M., Schmidt, J. C., and Meek, K. (2024) DNA-PK: A synopsis beyond synapsis, DNA Repair (Amst), 141, 103716, https://doi.org/10.1016/j.dnarep.2024.103716.
- Stinson, B. M., and Loparo, J. J. (2021) Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway, Annu. Rev. Biochem., 90, 137-164, https://doi.org/10.1146/annurev-biochem-080320-110356.
- Boulton, S. J., and Jackson, S. P. (1996) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways, EMBO J., 15, 5093-5103, https://doi.org/10.1002/j.1460-2075.1996.tb00890.x.
- Mason, R. M., Thacker, J., and Fairman, M. P. (1996) The joining of non-complementary DNA double-strand breaks by mammalian extracts, Nucleic Acids Res., 24, 4946-4953, https://doi.org/10.1093/nar/24.24.4946.
- Zhu, C., Mills, K. D., Ferguson, D. O., Lee, C., Manis, J., Fleming, J., Gao, Y., Morton, C. C., and Alt, F. W. (2002) Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations, Cell, 109, 811-821, https://doi.org/10.1016/S0092-8674(02)00770-5.
- Bennardo, N., Cheng, A., Huang, N., and Stark, J. M. (2008) Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair, PLOS Genet., 4, e1000110, https://doi.org/10.1371/journal. pgen.1000110.
- Sfeir, A., Tijsterman, M., and McVey, M. (2024) Microhomology-mediated end-joining chronicles: tracing the evolutionary footprints of genome protection, Ann. Rev. Cell Dev. Biol., 40, 195-218, https://doi.org/10.1146/annurev-cellbio-111822-014426.
- Schimmel, J., Van Schendel, R., Den Dunnen, J. T., and Tijsterman, M. (2019) Templated insertions: A smok-ing gun for polymerase Theta-mediated end joining, Trends Genet., 35, 632-644, https://doi.org/10.1016/j.tig. 2019.06.001.
- Bian, L., Meng, Y., Zhang, M., and Li, D. (2019) MRE11-RAD50-NBS1 complex alterations and DNA damage re-sponse: implications for cancer treatment, Mol. Cancer, 18, 169, https://doi.org/10.1186/s12943-019-1100-5.
- Conceição, C. J. F., Moe, E., Ribeiro, P. A., and Raposo, M. (2025) PARP1: A comprehensive review of its mech-anisms, therapeutic implications and emerging cancer treatments, Biochim. Biophys. Acta Rev. Cancer, 1880, 189282, https://doi.org/10.1016/j.bbcan.2025.189282.
- Staples, C. J., Barone, G., Myers, K. N., Ganesh, A., Gibbs-Seymour, I., Patil, A. A., Beveridge, R. D., Daye, C., Beniston, R., Maslen, S., Ahel, I., Skehel, J. M., and Collis, S. J. (2016) MRNIP/C5orf45 Interacts with the MRN Complex and Contributes to the DNA Damage Response, Cell Rep., 16, 2565-2575, https://doi.org/10.1016/j.celrep.2016.07.087.
- Wang, Y.-L., Zhao, W.-W., Bai, S.-M., Feng, L.-L., Bie, S.-Y., Gong, L., Wang, F., Wei, M.-B., Feng, W.-X., Pang, X.-L., Qin, C.-L., Yin, X.-K., Wang, Y.-N., Zhou, W., Wahl, D. R., Liu, Q., Chen, M., Hung, M.-C., and Wan, X.-B. (2022) MRNIP condensates promote DNA double-strand break sensing and end resection, Nat. Commun., 13, 2638, https://doi.org/10.1038/s41467-022-30303-w.
- Deshpande, R. A., Myler, L. R., Soniat, M. M., Makharashvili, N., Lee, L., Lees-Miller, S. P., Finkelstein, I. J., and Paull, T. T. (2020) DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP, Sci. Adv., 6, eaay0922, https://doi.org/10.1126/sciadv.aay0922.
- Myler, L. R., Gallardo, I. F., Soniat, M. M., Deshpande, R. A., Gonzalez, X. B., Kim, Y., Paull, T. T., and Finkelstein, I. J. (2017) Single-molecule imaging reveals how Mre11-Rad50-Nbs1 initiates DNA break repair, Mol. Cell, 67, 891-898.e4, https://doi.org/10.1016/j.molcel.2017.08.002.
- 52. Symington, L. S. (2016) Mechanism and regulation of DNA end resection in eukaryotes, Crit. Rev. Biochem. Mol. Biol., 51, 195-212, https://doi.org/10.3109/10409238.2016.1172552.
- Hou, W.-H., Chen, S.-H., and Yu, X. (2019) Poly-ADP ribosylation in DNA damage response and cancer therapy, Mutat. Res., 780, 82-91, https://doi.org/10.1016/j.mrrev.2017.09.004.
- Khodyreva, S. N., and Lavrik, O. I. (2016) Poly(ADP-Ribose) polymerase 1 as a key regulator of DNA repair, Mol. Biol., 50, 580-595, https://doi.org/10.1134/S0026893316040038.
- Luedeman, M. E., Stroik, S., Feng, W., Luthman, A. J., Gupta, G. P., and Ramsden, D. A. (2022) Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection, Nat. Commun., 13, 4547, https://doi.org/10.1038/s41467-022-32166-7.
- Özdemir, C., Purkey, L. R., Sanchez, A., and Miller, K. M. (2024) PARticular MARks: Histone ADP-ribosylation and the DNA damage response, DNA Repair (Amst), 140, 103711, https://doi.org/10.1016/j.dnarep.2024.103711.
- Shima, N., Munroe, R. J., and Schimenti, J. C. (2004) The mouse genomic instability mutation chaos1 is an al-lele of Polq that exhibits genetic interaction with Atm, Mol. Cell Biol., 24, 10381-10389, https://doi.org/10.1128/MCB.24.23.10381-10389.2004.
- Fijen, C., Drogalis Beckham, L., Terino, D., Li, Y., Ramsden, D. A., Wood, R. D., Doublié, S., and Rothenberg, E. (2024) Sequential requirements for distinct Polθ domains during theta-mediated end joining, Mol. Cell, 84, 1460-1474.e6, https://doi.org/10.1016/j.molcel.2024.03.010.
- Newman, J. A., Cooper, C. D. O., Aitkenhead, H., and Gileadi, O. (2015) Structure of the helicase domain of DNA polymerase theta reveals a possible role in the microhomology-mediated end-joining pathway, Structure, 23, 2319-2330, https://doi.org/10.1016/j.str.2015.10.014.
- Vanson, S., Li, Y., Wood, R. D., and Doublié, S. (2022) Probing the structure and function of polymerase θ he-licase-like domain, DNA Repair (Amst), 116, 103358, https://doi.org/10.1016/j.dnarep.2022.103358.
- Mateos-Gomez, P. A., Kent, T., Deng, S. K., McDevitt, S., Kashkina, E., Hoang, T. M., Pomerantz, R. T., and Sfeir, A.(2017) The helicase domain of Polθ counteracts RPA to promote alt-NHEJ, Nat. Struct. Mol. Biol., 24, 1116-1123, https://doi.org/10.1038/nsmb.3494.
- Ito, F., Li, Z., Minakhin, L., Khant, H. A., Pomerantz, R. T., and Chen, X. S. (2025) Structural basis for Polθ- helicase DNA binding and microhomology-mediated end-joining, Nat. Commun., 16, 3725, https://doi.org/10.1038/s41467-025-58441-x.
- Schaub, J. M., Soniat, M. M., and Finkelstein, I. J. (2022) Polymerase theta-helicase promotes end joining by stripping single-stranded DNA-binding proteins and bridging DNA ends, Nucleic Acids Res., 50, 3911-3921, https://doi.org/10.1093/nar/gkac119.
- Fleury, H., MacEachern, M. K., Stiefel, C. M., Anand, R., Sempeck, C., Nebenfuehr, B., Maurer-Alcalá, K., Ball, K., Proctor, B., Belan, O., Taylor, E., Ortega, R., Dodd, B., Weatherly, L., Dansoko, D., Leung, J. W., Boulton, S. J., and Arnoult, N. (2023) The APE2 nuclease is essential for DNA double-strand break repair by microhomology-me-diated end joining, Mol. Cell, 83, 1429-1445.e8, https://doi.org/10.1016/j.molcel.2023.03.017.
- Stroik, S., Carvajal-Garcia, J., Gupta, D., Edwards, A., Luthman, A., Wyatt, D. W., Dannenberg, R. L., Feng, W., Kunkel, T. A., Gupta, G. P., Hedglin, M., Wood, R., Doublié, S., Rothenberg, E., and Ramsden, D. A. (2023) Stepwise requirements for polymerases δ and θ in theta-mediated end joining, Nature, 623, 836-841, https://doi.org/10.1038/s41586-023-06729-7.
- Carvajal-Garcia, J., Cho, J.-E., Carvajal-Garcia, P., Feng, W., Wood, R. D., Sekelsky, J., Gupta, G. P., Roberts, S. A., and Ramsden, D. A. (2020) Mechanistic basis for microhomology identification and genome scarring by poly-merase theta, Proc. Natl. Acad. Sci. USA, 117, 8476-8485, https://doi.org/10.1073/pnas.1921791117.
- Stroik, S., Luthman, A. J., and Ramsden, D. A. (2024) Templated insertions – DNA repair gets acrobatic, Environ. Mol. Mutagen, 65, 82-89, https://doi.org/10.1002/em.22564.
- Kruchinin, A. A., and Makarova, A. V. (2023) Multifaceted nature of DNA polymerase θ, Int. J. Mol. Sci., 24, 3619, https://doi.org/10.3390/ijms24043619.
- Liang, L., Deng, L., Nguyen, S. C., Zhao, X., Maulion, C. D., Shao, C., and Tischfield, J. A. (2008) Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks, Nucleic Acids Res., 36, 3297-3310, https://doi.org/10.1093/nar/gkn184.
- Mengwasser, K. E., Adeyemi, R. O., Leng, Y., Choi, M. Y., Clairmont, C., D’Andrea, A. D., and Elledge, S. J. (2019) Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets, Mol. Cell, 73, 885-899.e6, https://doi.org/10.1016/j.molcel.2018.12.008.
- Llorens-Agost, M., Ensminger, M., Le, H. P., Gawai, A., Liu, J., Cruz-García, A., Bhetawal, S., Wood, R. D., Heyer, W.-D., and Löbrich, M. (2021) POLθ-mediated end joining is restricted by RAD52 and BRCA2 until the onset of mitosis, Nat. Cell Biol., 23, 1095-1104, https://doi.org/10.1038/s41556-021-00764-0.
- Heijink, A. M., Stok, C., Porubsky, D., Manolika, E. M., de Kanter, J. K., Kok, Y. P., Everts, M., de Boer, H. R., Audrey, A., Bakker, F. J., Wierenga, E., Tijsterman, M., Guryev, V., Spierings, D. C. J., Knipscheer, P., van Boxtel, R. Ray Chaudhuri, A., Lansdorp, P. M., and van Vugt, M. A. T. M. (2022) Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51, Nat. Commun., 13, 6722, https://doi.org/10.1038/s41467-022-34519-8.
- 73. Ye, G., He, Y., Zhang, Y., Li, D., Liu, F., Li, Y., Ge, Q., Guo, Q., Han, S., Song, C., Chang, W., Zhang, H., Peng, Q., Sun, K., Ji, W., and Deng, L. (2025) Mitotic DNA repair by TMEJ suppresses replication stress-induced nuclear envelope reassembly defect, Nat. Commun., 16, 8836, https://doi.org/10.1038/s41467-025-63942-w.
- Wilson, T. E., Ahmed, S., Winningham, A., and Glover, T. W. (2024) Replication stress induces POLQ-mediated structural variant formation throughout common fragile sites after entry into mitosis, Nat. Commun., 15, 9582, https://doi.org/10.1038/s41467-024-53917-8.
- Wu, T., Li, Y., Zhao, Y., Shah, S. B., Shi, L. Z., and Wu, X. (2025) Break-induced replication is activated to re-pair R-loop-associated double-strand breaks in SETX-deficient cells, Cell Rep., 44, 116386, https://doi.org/10.1016/j.celrep.2025.116386.
- Kunihisa, T., Inubushi, S., Tanino, H., and Hoffman, R. M. (2024) Induction of the DNA-repair gene POLQ only in BRCA1-mutant breast-cancer cells by methionine restriction, Cancer Genom. Proteom., 21, 399-404, https://doi.org/10.21873/cgp.20458.
- Bazan Russo, T. D., Mujacic, C., Di Giovanni, E., Vitale, M. C., Ferrante Bannera, C., Randazzo, U., Contino, S., Bono, M., Gristina, V., Galvano, A., Perez, A., Badalamenti, G., Russo, A., Bazan, V., and Incorvaia, L. (2024) Polθ: emerging synthetic lethal partner in homologous recombination-deficient tumors, Cancer Gene Ther., 31, 1619-1631, https://doi.org/10.1038/s41417-024-00815-2.
- Schrempf, A., Slyskova, J., and Loizou, J. I. (2021) Targeting the DNA repair enzyme polymerase θ in cancer therapy, Trends Cancer, 7, 98-111, https://doi.org/10.1016/j.trecan.2020.09.007.
- Ackerson, S. M., Romney, C., Schuck, P. L., and Stewart, J. A. (2021) To join or not to join: decision points along the pathway to double-strand break repair vs. chromosome end protection, Front. Cell Dev. Biol., 9, 708763, https://doi.org/10.3389/fcell.2021.708763.
- Deshpande, R. A., Marin-Gonzalez, A., Barnes, H. K., Woolley, P. R., Ha, T., and Paull, T. T. (2023) Genome-wide analysis of DNA-PK-bound MRN cleavage products supports a sequential model of DSB repair pathway choice, Nat. Commun., 14, 5759, https://doi.org/10.1038/s41467-023-41544-8.
- Kumari, N., Kaur, E., Raghavan, S. C., and Sengupta, S. (2025) Regulation of pathway choice in DNA repair after double-strand breaks, Curr. Opin. Pharmacol., 80, 102496, https://doi.org/10.1016/j.coph.2024.102496.
- Tan, J., Sun, X., Zhao, H., Guan, H., Gao, S., and Zhou, P.-K. (2023) Double-strand DNA break repair: molecular mechanisms and therapeutic targets, MedComm. (2020), 4, e388, https://doi.org/10.1002/mco2.388.
- Truong, L. N., Li, Y., Shi, L. Z., Hwang, P. Y.-H., He, J., Wang, H., Razavian, N., Berns, M. W., and Wu, X.(2013) Microhomology-mediated End joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells, Proc. Natl. Acad. Sci. USA, 110, 7720-7725, https://doi.org/10.1073/pnas.1213431110.
- Chang, H. H. Y., Pannunzio, N. R., Adachi, N., and Lieber, M. R. (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair, Nat. Rev. Mol. Cell Biol., 18, 495-506, https://doi.org/10.1038/nrm.2017.48.
- Scully, R., Panday, A., Elango, R., and Willis, N. A. (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells, Nat. Rev. Mol. Cell Biol., 20, 698-714, https://doi.org/10.1038/s41580-019-0152-0.
- Sturzenegger, A., Burdova, K., Kanagaraj, R., Levikova, M., Pinto, C., Cejka, P., and Janscak, P. (2014) DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells, J. Biol. Chem., 289, 27314-27326, https://doi.org/10.1074/jbc.M114.578823.
- Ceppi, I., Howard, S. M., Kasaciunaite, K., Pinto, C., Anand, R., Seidel, R., and Cejka, P. (2020) CtIP promotes the motor activity of DNA2 to accelerate long-range DNA end resection, Proc. Natl. Acad. Sci. USA, 117, 8859-8869, https://doi.org/10.1073/pnas.2001165117.
- Kciuk, M., Gielecińska, A., Mujwar, S., Mojzych, M., and Kontek, R. (2022) Cyclin-dependent kinases in DNA damage response, Biochim. Biophys. Acta, 1877, 188716, https://doi.org/10.1016/j.bbcan.2022.188716.
- Hu, Q., Zhao, D., Cui, G., Bhandari, J., Thompson, J. R., Botuyan, M. V., and Mer, G. (2024) Mechanisms of RNF168 nucleosome recognition and ubiquitylation, Mol. Cell, 84, 839-853.e12, https://doi.org/10.1016/j.molcel.2023.12.036.
- Hustedt, N., and Durocher, D. (2017) The control of DNA repair by the cell cycle, Nat. Cell Biol., 19, 1-9, https://doi.org/10.1038/ncb3452.
- Setiaputra, D., Escribano-Diaz, C., Reinert, J. K., Sadana, P., Zong, D., Callen, E., Sifri, C., Seebacher, J., Nussenzweig, A., Thomä, N. H., and Durocher, D. (2022) RIF1 acts in DNA repair through phosphopeptide rec-ognition of 53BP1, Mol. Cell, 82, 1359-1371.e9, https://doi.org/10.1016/j.molcel.2022.01.025.
- Chapman, J. R., Taylor, M. R. G., and Boulton, S. J. (2012) Playing the end game: DNA double-strand break repair pathway choice, Mol. Cell, 47, 497-510, https://doi.org/10.1016/j.molcel.2012.07.029.
- 93. Isono, M., Niimi, A., Oike, T., Hagiwara, Y., Sato, H., Sekine, R., Yoshida, Y., Isobe, S.-Y., Obuse, C., Nishi, R., Petricci, E., Nakada, S., Nakano, T., and Shibata, A. (2017) BRCA1 directs the repair pathway to homolo-gous recombination by promoting 53BP1 dephosphorylation, Cell Rep., 18, 520-532, https://doi.org/10.1016/j.celrep.2016.12.042.
- Ochs, F., Karemore, G., Miron, E., Brown, J., Sedlackova, H., Rask, M.-B., Lampe, M., Buckle, V., Schermelleh, L., Lukas, J., and Lukas, C. (2019) Stabilization of chromatin topology safeguards genome integrity, Nature, 574, 571-574, https://doi.org/10.1038/s41586-019-1659-4.
- Cruz-García, A., López-Saavedra, A., and Huertas, P. (2014) BRCA1 accelerates CtIP-mediated DNA-end resection, Cell Rep., 9, 451-459, https://doi.org/10.1016/j.celrep.2014.08.076.
- Yu, X., Fu, S., Lai, M., Baer, R., and Chen, J. (2006) BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP, Genes. Dev., 20, 1721-1726, https://doi.org/10.1101/gad.1431006.
- Ceppi, I., Dello Stritto, M. R., Mütze, M., Braunshier, S., Mengoli, V., Reginato, G., Võ, H. M. P., Jimeno, S., Acharya, A., Roy, M., Sanchez, A., Halder, S., Howard, S. M., Guérois, R., Huertas, P., Noordermeer, S. M., Seidel, R., and Cejka, P. (2024) Mechanism of BRCA1–BARD1 function in DNA end resection and DNA protec-tion, Nature, 634, 492-500, https://doi.org/10.1038/s41586-024-07909-9.
- Densham, R. M., Garvin, A. J., Stone, H. R., Strachan, J., Baldock, R. A., Daza-Martin, M., Fletcher, A., Blair- Reid, S., Beesley, J., Johal, B., Pearl, L. H., Neely, R., Keep, N. H., Watts, F. Z., and Morris, J. R. (2016) Human BRCA1-BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection, Nat. Struct. Mol. Biol., 23, 647-655, https://doi.org/10.1038/nsmb.3236.
- Bohgaki, M., Bohgaki, T., El Ghamrasni, S., Srikumar, T., Maire, G., Panier, S., Fradet-Turcotte, A., Stewart, G. S., Raught, B., Hakem, A., and Hakem, R. (2013) RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks, Proc. Natl. Acad. Sci. USA, 110, 20982-20987, https://doi.org/10.1073/pnas.1320302111.
- . Markert, J., Zhou, K., and Luger, K. (2021) SMARCAD1 is an ATP-dependent histone octamer exchange factor with de novo nucleosome assembly activity, Sci. Adv., 7, eabk2380, doi: 10.1126/sciadv.abk2380, https://doi.org/10.1126/sciadv.abk2380.
- . Lo, C. S. Y., van Toorn, M., Gaggioli, V., Paes Dias, M., Zhu, Y., Manolika, E. M., Zhao, W., van der Does, M., Mukherjee, C., Souto Gonçalves, J. G. S. C., van Royen, M. E., French, P. J., Demmers, J., Smal, I., Lans, H., Wheeler, D., Jonkers, J., Chaudhuri, A. R., Marteijn, J. A., and Taneja, N. (2021) SMARCAD1-mediated active rep-lication fork stability maintains genome integrity, Sci. Adv., 7, eabe7804, https://doi.org/10.1126/sciadv.abe7804.
- . Vergara, X., Manjón, A. G., de Haas, M., Morris, B., Schep, R., Leemans, C., Friskes, A., Beijersbergen, R. L., Sanders, M. A., Medema, R. H., and van Steensel, B. (2024) Widespread chromatin context-dependencies of DNA double-strand break repair proteins, Nat. Commun., 15, 5334, https://doi.org/10.1038/s41467-024-49232-x.
- . Arnoult, N., Correia, A., Ma, J., Merlo, A., Garcia-Gomez, S., Maric, M., Tognetti, M., Benner, C. W., Boulton, S. J., Saghatelian, A., and Karlseder, J. (2017) Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN, Nature, 549, 548-552, https://doi.org/10.1038/nature24023.
- . Xie, L., Bowman, M. E., Louie, G. V., Zhang, C., Ardejani, M. S., Huang, X., Chu, Q., Donaldson, C. J., Vaughan, J. M., Shan, H., Powers, E. T., Kelly, J. W., Lyumkis, D., Noel, J. P., and Saghatelian, A. (2023) Biochemistry and protein interactions of the CYREN microprotein, Biochemistry, 62, 3050-3060, https://doi.org/10.1021/acs.biochem.3c00397.
- . Kieffer, S. R., and Lowndes, N. F. (2022) Immediate-early, early, and late responses to DNA double stranded breaks, Front. Genet., 13, 793884, https://doi.org/10.3389/fgene.2022.793884.
- . Ortega, R., Bitler, B. G., and Arnoult, N. (2025) Multiple functions of PARP1 in the repair of DNA double strand breaks, DNA Repair (Amst), 152, 103873, https://doi.org/10.1016/j.dnarep.2025.103873.
- . Yamashita, S., Tanaka, M., Ida, C., Kouyama, K., Nakae, S., Matsuki, T., Tsuda, M., Shirai, T., Kamemura, K., Nishi, Y., Moss, J., and Miwa, M. (2022) Physiological levels of poly(ADP-ribose) during the cell cycle regulate HeLa cell proliferation, Exp. Cell Res., 417, 113163, https://doi.org/10.1016/j.yexcr.2022.113163.
- . Liu, C., Vyas, A., Kassab, M. A., Singh, A. K., and Yu, X. (2017) The role of poly ADP-ribosylation in the first wave of DNA damage response, Nucleic Acids Res., 45, 8129-8141, https://doi.org/10.1093/nar/gkx565.
- . Wang, M., Wu, W., Wu, W., Rosidi, B., Zhang, L., Wang, H., and Iliakis, G. (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways, Nucleic Acids Res., 34, 6170-6182, https://doi.org/10.1093/nar/gkl840.
- . Caron, M.-C., Sharma, A. K., O’Sullivan, J., Myler, L. R., Ferreira, M. T., Rodrigue, A., Coulombe, Y., Ethier, C., Gagné, J.-P., Langelier, M.-F., Pascal, J. M., Finkelstein, I. J., Hendzel, M. J., Poirier, G. G., and Masson, J.-Y. (2019) Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks, Nat. Commun., 10, 2954, https://doi.org/10.1038/s41467-019-10741-9.
- . Lodovichi, S., Quadri, R., Sertic, S., and Pellicioli, A. (2023) PARylation of BRCA1 limits DNA break resection through BRCA2 and EXO1, Cell Rep., 42, 112060, https://doi.org/10.1016/j.celrep.2023.112060.
- 112. Blackford, A. N., and Stucki, M. (2020) How cells respond to DNA breaks in mitosis, Trends Biochem. Sci., 45, 321- 331, https://doi.org/10.1016/j.tibs.2019.12.010.
- . Rieder, C. L., and Cole, R. W. (1998) Entry into mitosis in vertebrate somatic cells is guarded by a chromosome damage checkpoint that reverses the cell cycle when triggered during early but not late prophase, J. Cell Biol., 142, 1013-1022, https://doi.org/10.1083/jcb.142.4.1013.
- . Lindsey-Boltz, L. A., Kemp, M. G., Capp, C., and Sancar, A. (2015) RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling, Cell Cycle, 14, 99-108, https://doi.org/10.4161/ 15384101.2014.967076.
- . Hara, K., Tatsukawa, K., Nagata, K., Iida, N., Hishiki, A., Ohashi, E., and Hashimoto, H. (2024) Structural basis for intra- and intermolecular interactions on RAD9 subunit of 9-1-1 checkpoint clamp implies functional 9-1-1 regulation by RHINO, J. Biol. Chem., 300, 105751, https://doi.org/10.1016/j.jbc.2024.105751.
- . Brambati, A., Sacco, O., Porcella, S., Heyza, J., Kareh, M., Schmidt, J. C., and Sfeir, A. (2023) RHINO directs MMEJ to repair DNA breaks in mitosis, Science, 381, 653-660, https://doi.org/10.1126/science.adh3694.
- . Gelot, C., Kovacs, M. T., Miron, S., Mylne, E., Haan, A., Boeffard-Dosierre, L., Ghouil, R., Popova, T., Dingli, F., Loew, D., Guirouilh-Barbat, J., Del Nery, E., Zinn-Justin, S., and Ceccaldi, R. (2023) Polθ is phosphorylat-ed by PLK1 to repair double-strand breaks in mitosis, Nature, 621, 415-422, https://doi.org/10.1038/s41586-023-6506-6.
- . Iliaki, S., Beyaert, R., and Afonina, I. S. (2021) Polo-like kinase 1 (PLK1) signaling in cancer and beyond, Bio-chem. Pharmacol., 193, 114747, https://doi.org/10.1016/j.bcp.2021.114747.
- . van Vugt, M. A. T. M., and Tijsterman, M. (2023) POLQ to the rescue for double-strand break repair during mitosis, Nat. Struct. Mol. Biol., 30, 1828-1830, https://doi.org/10.1038/s41594-023-01168-4.
- . Aguilera, A., and Gaillard, H. (2014) Transcription and recombination: when RNA meets DNA, Cold Spring Harb. Perspect. Biol., 6, a016543, https://doi.org/10.1101/cshperspect.a016543.
- . Corazzi, L., Ionasz, V. S., Andrejev, S., Wang, L.-C., Vouzas, A., Giaisi, M., Di Muzio, G., Ding, B., Marx, A. J. M., Henkenjohann, J., Allers, M. M., Gilbert, D. M., and Wei, P.-C. (2024) Linear interaction between replication and transcription shapes DNA break dynamics at recurrent DNA break clusters, Nat. Commun., 15, 3594, https://doi.org/10.1038/s41467-024-47934-w.
- . Goehring, L., Huang, T. T., and Smith, D. J. (2023) Transcription-replication conflicts as a source of genome instability, Annu. Rev. Genet., 57, 157-179, https://doi.org/10.1146/annurev-genet-080320-031523.
- . Lin, Y., Dent, S. Y. R., Wilson, J. H., Wells, R. D., and Napierala, M. (2010) R loops stimulate genetic instability of CTG·CAG repeats, Proc. Natl. Acad. Sci. USA, 107, 692-697, https://doi.org/10.1073/pnas.0909740107.
- . Mehta, A., and Haber, J. E. (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair, Cold Spring Harb. Perspect. Biol., 6, a016428, https://doi.org/10.1101/cshperspect.a016428.
- . Chaudhuri, J., Basu, U., Zarrin, A., Yan, C., Franco, S., Perlot, T., Vuong, B., Wang, J., Phan, R. T., Datta, A., Manis, J., and Alt, F. W. (2007) Evolution of the immunoglobulin heavy chain class switch recombination mech-anism, Adv. Immunol., 94, 157-214, https://doi.org/10.1016/S0065-2776(06)94006-1.
- . Schatz, D. G., and Swanson, P. C. (2011) V(D)J Recombination: mechanisms of initiation, Annu. Rev. Genet., 45, 167- 202, https://doi.org/10.1146/annurev-genet-110410-132552.
- . Baudat, F., Manova, K., Yuen, J. P., Jasin, M., and Keeney, S. (2000) Chromosome synapsis defects and sex-ually dimorphic meiotic progression in mice lacking Spo11, Mol. Cell, 6, 989-998, https://doi.org/10.1016/S1097-2765(00)00098-8.
- . Romanienko, P. J., and Camerini-Otero, R. D. (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis, Mol. Cell, 6, 975-987, https://doi.org/10.1016/S1097-2765(00)00097-6.
- . Tang, X., Hu, Z., Ding, J., Wu, M., Guan, P., Song, Y., Yin, Y., Wu, W., Ma, J., Huang, Y., and Tong, M.-H.(2025) In vitro reconstitution of meiotic DNA double-strand-break formation, Nature, 639, 800-807, https://doi.org/10.1038/s41586-024-08551-1.
- . Champoux, J. J. (2001) DNA topoisomerases: structure, function, and mechanism, Annu. Rev. Biochem., 70, 369-413, https://doi.org/10.1146/annurev.biochem.70.1.369.
- . Liu, L. F., Rowe, T. C., Yang, L., Tewey, K. M., and Chen, G. L. (1983) Cleavage of DNA by mammalian DNA topoisomerase II, J. Biol. Chem., 258, 15365-15370, https://doi.org/10.1016/S0021-9258(17)43815-4.
- . Schmidt, B. H., Osheroff, N., and Berger, J. M. (2012) Structure of a topoisomerase II–DNA–nucleotide complex reveals a new control mechanism for ATPase activity, Nat. Struct. Mol. Biol., 19, 1147-1154, https://doi.org/ 10.1038/nsmb.2388.
- . Nitiss, J. L. (2009) Targeting DNA topoisomerase II in cancer chemotherapy, Nat. Rev. Cancer, 9, 338-350, https://doi.org/10.1038/nrc2607.
- . Canela, A., Maman, Y., Huang, S. N., Wutz, G., Tang, W., Zagnoli-Vieira, G., Callen, E., Wong, N., Day, A., Peters, J.-M., Caldecott, K. W., Pommier, Y., and Nussenzweig, A. (2019) Topoisomerase II-induced chromosome breakage and translocation is determined by chromosome architecture and transcriptional activity, Mol. Cell, 75, 252-266.e8, https://doi.org/10.1016/j.molcel.2019.04.030.
- 135. Robinson, M. J., and Osheroff, N. (1991) Effects of antineoplastic drugs on the post-strand-passage DNA cleavage/religation equilibrium of topoisomerase II, Biochemistry, 30, 1807-1813, https://doi.org/10.1021/bi00221a012.
- . Cowell, I. G., Sondka, Z., Smith, K., Lee, K. C., Manville, C. M., Sidorczuk-Lesthuruge, M., Rance, H. A., Padget, K., Jackson, G. H., Adachi, N., and Austin, C. A. (2012) Model for MLL translocations in therapy-related leukemia involving topoisomerase IIβ-mediated DNA strand breaks and gene proximity, Proc. Natl. Acad. Sci. USA, 109, 8989-8994, https://doi.org/10.1073/pnas.1204406109.
- . Smith, K. A., Cowell, I. G., Zhang, Y., Sondka, Z., and Austin, C. A. (2014) The role of topoisomerase II beta on breakage and proximity of RUNX1 to partner alleles RUNX1T1 and EVI1, Genes Chromosomes Cancer, 53, 117-128, https://doi.org/10.1002/gcc.22124.
- . Zhang, Y., Strissel, P., Strick, R., Chen, J., Nucifora, G., Le Beau, M. M., Larson, R. A., and Rowley, J. D. (2002) Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia, Proc. Natl. Acad. Sci. USA, 99, 3070-3075, https://doi.org/10.1073/pnas.042702899.
- . Reginato, G., and Cejka, P. (2020) The MRE11 complex: A versatile toolkit for the repair of broken DNA, DNA Repair, 91-92, 102869, https://doi.org/10.1016/j.dnarep.2020.102869.
- . Sasanuma, H., Yamada, S., Tsuda, M., and Takeda, S. (2020) Restoration of ligatable “clean” double-strand break ends is the rate-limiting step in the rejoining of ionizing-radiation-induced DNA breakage, DNA Repair, 93, 102913, https://doi.org/10.1016/j.dnarep.2020.102913.
- . Britton, S., Chanut, P., Delteil, C., Barboule, N., Frit, P., and Calsou, P. (2020) ATM antagonizes NHEJ pro-teins assembly and DNA-ends synapsis at single-ended DNA double strand breaks, Nucleic Acids Res., 48, 9710-9723, https://doi.org/10.1093/nar/gkaa723.
- . Kockler, Z. W., Osia, B., Lee, R., Musmaker, K., and Malkova, A. (2021) Repair of DNA breaks by break-induced replication, Annu. Rev. Biochem., 90, 165-191, https://doi.org/10.1146/annurev-biochem-081420-095551.
- . Han, J., and Huang, J. (2020) DNA double-strand break repair pathway choice: the fork in the road, Genome Instab. Dis., 1, 10-19, https://doi.org/10.1007/s42764-019-00002-w.
- . Wojtaszek, J. L., and Williams, R. S. (2024) From the TOP: Formation, recognition and resolution of topoisom-erase DNA protein crosslinks, DNA Repair (Amst), 142, 103751, https://doi.org/10.1016/j.dnarep.2024.103751.
- . Lomov, N. A., Viushkov, V. S., and Rubtsov, M. A. (2023) Mechanisms of secondary leukemia development caused by treatment with DNA topoisomerase inhibitors, Biochemistry (Moscow), 88, 892-911, doi: 10.1134/S0006297923070040, https://doi.org/10.1134/S0006297923070040.
- . Riccio, A. A., Schellenberg, M. J., and Williams, R. S. (2020) Molecular mechanisms of topoisomerase 2 DNA–protein crosslink resolution, Cell. Mol. Life Sci., 77, 81-91, https://doi.org/10.1007/s00018-019-03367-z.
- . Swan, R. L., Cowell, I. G., and Austin, C. A. (2022) Mechanisms to repair stalled topoisomerase II-DNA covalent complexes, Mol. Pharmacol., 101, 24-32, https://doi.org/10.1124/molpharm.121.000374.
- . Löbrich, M., and Jeggo, P. (2017) A process of resection-dependent nonhomologous end joining involving the goddess artemis, Trends Biochem. Sci., 42, 690-701, https://doi.org/10.1016/j.tibs.2017.06.011.
- . Qi, Y., Warmenhoven, J. W., Henthorn, N. T., Ingram, S. P., Xu, X. G., Kirkby, K. J., and Merchant, M. J. (2021) Mechanistic modelling of slow and fast NHEJ dna repair pathways following radiation for G0/G1 normal tissue cells, Cancers, 13, 2202, https://doi.org/10.3390/cancers13092202.
- . Lieber, M. R. (2010) NHEJ and its backup pathways: relation to chromosomal translocations, Nat. Struct. Mol. Biol., 17, 393-395, https://doi.org/10.1038/nsmb0410-393.
- . Glukhov, S. I., Rubtsov, M. A., Alexeyevsky, D. A., Alexeevski, A. V., Razin, S. V., and Iarovaia, O. V. (2013) The broken MLL gene is frequently located outside the inherent chromosome territory in human lymphoid cells treated with DNA topoisomerase II poison etoposide, PLoS One, 8, e75871, https://doi.org/10.1371/journal. pone.0075871.
- . Lomov, N. A., Viushkov, V. S., Ulianov, S. V., Gavrilov, A. A., Alexeyevsky, D. A., Artemov, A. V., Razin, S. V., and Rubtsov, M. A. (2022) Recurrent translocations in topoisomerase inhibitor-related leukemia are determined by the features of DNA breaks rather than by the proximity of the translocating genes, Int. J. Mol. Sci., 23, 9824, https://doi.org/10.3390/ijms23179824.
- . Krawczyk, P. M., Borovski, T., Stap, J., Cijsouw, A., Ten Cate, R., Medema, J. P., Kanaar, R., Franken, N. A. P., and Aten, J. A. (2012) Chromatin mobility is increased at sites of DNA double-strand breaks, J. Cell Sci., 125, 2127-2133, https://doi.org/10.1242/jcs.089847.
- . Bentley, J., Diggle, C. P., Harnden, P., Knowles, M. A., and Kiltie, A. E. (2004) DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining, Nucleic Acids Res., 32, 5249-5259, https://doi.org/10.1093/nar/gkh842.
- 155. Simsek, D., and Jasin, M. (2010) Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4–ligase IV during chromosomal translocation formation, Nat. Struct. Mol. Biol., 17, 410-416, https://doi.org/ 10.1038/nsmb.1773.
- . Ghezraoui, H., Piganeau, M., Renouf, B., Renaud, J.-B., Sallmyr, A., Ruis, B., Oh, S., Tomkinson, A. E., Hendrickson, E. A., Giovannangeli, C., Jasin, M., and Brunet, E. (2014) Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining, Mol. Cell, 55, 829-842, https://doi.org/10.1016/j.molcel. 2014.08.002.
- . Wang, J., Sadeghi, C. A., and Frock, R. L. (2024) DNA-PKcs suppresses illegitimate chromosome rearrangements, Nucleic Acids Res., 52, 5048-5066, https://doi.org/10.1093/nar/gkae140.
- . Zhang, Y., and Jasin, M. (2011) An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway, Nat. Struct. Mol. Biol., 18, 80-84, https://doi.org/10.1038/nsmb.1940.
- . Weinstock, D. M., Brunet, E., and Jasin, M. (2007) Formation of NHEJ-derived reciprocal chromosomal translo-cations does not require Ku70, Nat. Cell Biol., 9, 978-981, https://doi.org/10.1038/ncb1624.
- . Roukos, V., Voss, T. C., Schmidt, C. K., Lee, S., Wangsa, D., and Misteli, T. (2013) Spatial dynamics of chromosome translocations in living cells, Science, 341, 660-664, https://doi.org/10.1126/science.1237150.
- . Shmakova, A., Lomov, N., Viushkov, V., Tsfasman, T., Kozhevnikova, Y., Sokolova, D., Pokrovsky, V., Syrkina, M., Germini, D., Rubtsov, M., and Vassetzky, Y. (2023) Cell models with inducible oncogenic translocations al-low to evaluate the potential of drugs to favor secondary translocations, Cancer Commun., 43, 154-158, https://doi.org/10.1002/cac2.12370.
- . Chiarle, R., Zhang, Y., Frock, R. L., Lewis, S. M., Molinie, B., Ho, Y.-J., Myers, D. R., Choi, V. W., Compagno, M., Malkin, D. J., Neuberg, D., Monti, S., Giallourakis, C. C., Gostissa, M., and Alt, F. W. (2011) Genome-wide translo-cation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells, Cell, 147, 107-119, https://doi.org/10.1016/j.cell.2011.07.049.
- . Dueva, R., and Iliakis, G. (2013) Alternative pathways of non-homologous end joining (NHEJ) in genomic insta-bility and cancer, Translat. Cancer Res., 2, 163-177.
Дополнительные файлы


