LABORATORY EVOLUTION: MOLECULAR GENETIC BASIS AND PHENOTYPIC PLASTICITY

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Adaptive laboratory evolution (ALE) is a scientific approach that aims to study the molecular basis of adaptation. It is a widely used tool that facilitates a deeper understanding of the genetic and/or metabolic pathways of evolution. One of the primary objectives of experimental evolution is to predict which mutations are the "significant" drivers of adaptation. The use of re-sequencing of the entire genome facilitates the identification of mutations that occurred during ALE, and consequently, the biochemical changes that occurred with the experimental lines. In addition to its theoretical aspects, ALE also has a practical side. It represents an innovative approach to creating evolved strains of microbes with desired characteristics, such as rapid growth, stress resistance, efficient use of various substrates, and the production of products with sufficiently high added value (amino acids, ethanol, aromatic compounds, lipids). The review presents the results of studies explaining and demonstrating the relationship of mutations with the observed phenotypic and biochemical changes, as well as the possibilities of microorganisms as model objects for conducting laboratory evolutionary experiments and testing various evolutionary hypotheses. The objective of this study was to emphasize the accomplishments attained by virtue of the ALE strategy, whilst concomitantly highlighting outstanding concerns and the unresolved limitations of the method.

Авторлар туралы

Ya. Dunaevsky

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: dun@belozersky.msu.ru
119991 Moscow, Russia

O. Kudryavtseva

Lomonosov Moscow State University

119991 Moscow, Russia

M. Belozersky

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

Әдебиет тізімі

  1. Johnson, M. S., Gopalakrishnan, S., Goyal, J., Dillingham, M. E., Bakerlee, C. W., Humphrey, P. T., Jagdish, T., Jerison, E. R., Kosheleva, K., Lawrence, K. R., Min, J., Moulana, A., Phillips, A. M., Piper, J. C., Purkanti, R., Rego-Costa, A., McDonald, M. J., Nguyen Ba, A. N., and Desai, M. M. (2021) Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations, Elife, 10, e63910, https://doi.org/10.7554/eLife.63910.
  2. Blount, Z., Borland, C., and Lenski, R. (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli, Proc. Natl. Acad. Sci. USA, 105, 7899-7906, https://doi.org/10.1073/pnas.0803151105.
  3. Barrick, J. E., and Lenski, R. E. (2013) Genome dynamics during experimental evolution, Nat. Rev. Genet., 14, 827-839, https://doi.org/10.1038/nrg3564.
  4. Couce, A., and Tenaillon, O. A. (2015) The  rule of declining adaptability in microbial evolution experiments, Front Genet., 6, 99, https://doi.org/10.3389/fgene.2015.00099.
  5. Lenski, R. E., Rose, M. R., Simpson, S. C., and Tadler, S. C. (1991) Long-term experimental evolution in Escherichia coli. I.  Adaptation and divergence during 2,000 generations, Am. Nat., 138, 1315-1341, https://doi.org/10.1086/285289.
  6. Ghoshal, M., Bechtel, T. D., Gibbons, J. G., and McLandsborough, L. (2023) Adaptive laboratory evolution of Salmonella enterica in acid stress, Front. Microbiol., 14, 1285421, https://doi.org/10.3389/fmicb.2023.1285421.
  7. Xia, H., Kang, Y., Ma, Z., Hu, C., Yang, Q., Zhang, X., Yang, S., Dai, J., and Chen, X. (2022) Evolutionary and reverse engineering in Saccharomyces cerevisiae reveals a Pdr1p mutation-dependent mechanism for 2-phenylethanol tolerance. Microb Cell Fact., 21, 269, https://doi.org/10.1186/s12934-022-01996-x.
  8. Rychel, K., Tan, J., Patel, A., Lamoureux, C., Hefner, Y., Szubin, R., Johnsen, J., Tharwat, E., Mohamed, T., Phaneuf, P. V., Anand, A., Olson, C. A., Park, J. H., Sastry, A. V., Yang, L., Feist, A. M., and Palsson, B. O. (2023) Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance, Cell Rep., 42, 113105, https://doi.org/10.1016/j.celrep.2023.113105.
  9. Kim, K., Hou, C. Y., Choe, D., Kang, M., Cho, S., Sung, B. H., Lee, D.-H., Lee, S.-G., Kang, T. J., and Cho, B.-K. (2022) Adaptive laboratory evolution of Escherichia coli  W enhances gamma-aminobutyric acid production using glyc-erol as the carbon source, Metab. Eng., 69, 59-72, https://doi.org/10.1016/j.ymben.2021.11.004.
  10. Lee, Y., Sathesh-Prabu, C., Kwak, G. H., Bang, I., Jung, H. W., Kim, D., and Lee, S. K. (2022) Enhanced production of nonanedioic acid from nonanoic acid by engineered Escherichia coli, Biotechnol.  J., 17, e2000416, https://doi.org/10.1002/biot.202000416.
  11. Seong, W., Han, G. H., Lim, H. S., Baek, J. I., Kim, S. J., Kim, D., Kim, S. K., Lee, H., Kim, H., Lee, S. G., and Lee, D. H. (2020) Adaptive laboratory evolution of Escherichia coli lacking cellular byproduct formation for en-hanced acetate utilization through compensatory ATP consumption, Metab. Eng. Commun., 62, 249-259, https://doi.org/10.1016/j.ymben.2020.09.005.
  12. Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh, T. K., Schneider, D., Lenski, R. E., and Kim, J. F. (2009) Ge-nome evolution and adaptation in a long-term experiment with Escherichia coli, Nature, 461, 1243-1247, https://doi.org/10.1038/nature08480.
  13. Good, B., McDonald, M., Barrick, J. E., Lenski R. E., and Desai M. M. (2017) The dynamics of molecular evolution over 60,000 generations, Nature, 551, 45-50, https://doi.org/10.1038/nature24287.
  14. Tenaillon, O., Barrick, J. E., Ribeck, N., Deatherage, D. E., Blanchard, J. L., Dasgupta, A., Wu, G. C., Wielgoss, S., Cruveiller, S., Médigue, C., Schneider, D., and Lenski, R. E. (2016) Tempo and mode of genome evolution in a 50,000-generation experiment, Nature, 536, 165-170, https://doi.org/10.1038/nature18959.
  15. Dallinger, W. H. (1887) The  president’s address, J.  Royal Microscopical Soc. Trans. Soc., 10, 191-192.
  16. Barrick, J. E., Deatherage, D. E., and Lenski, R. E. (2020) A  test of the repeatability of measurements of rela-tive fitness in the long-term evolution experiment with Escherichia coli, in Evolution in Action: Past, Present and Future (Banzhaf, W., Cheng, B. H. C., Deb, K., Holekamp, K. E., Lenski, R. E., Ofria, C., Pennock, R. T., Punch, W. F., and Whittaker, D. J., eds) Springer, Cham, Switzerland, pp.  77-89, https://doi.org/10.1007/978-3-030- 39831-6_8.
  17. Lang, G. I., Rice, D., Hickman, M., Sodergren, E., Weinstock, G. M., Botstein, D., and Desai, M. M. (2013) Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations, Nature, 500, 571-574, https://doi.org/10.1038/nature12344.
  18. Maddamsetti, R., Hatcher, P. J., Green, A. G., Williams, B. L., Marks, D. S., and Lenski, R. E. (2017) Core genes evolve rapidly in the long-term evolution experiment with Escherichia coli, Genome Biol. Evol., 9, 1072-1083, https://doi.org/10.1093/gbe/evx064.
  19. 9. Philippe, N., Crozat, E., Lenski, R. E., and Schneider, D. (2007) Evolution of global regulatory networks during a long-term experiment with Escherichia coli, BioEssays, 29, 846-860, https://doi.org/10.1002/bies.20629.
  20. Saxer, G., Krepps, M. D., Merkley, E. D., Ansong, C., Deatherage Kaiser, B. L., Valovska, M-T., Ristic, N., Yeh, P. T., Prakash, V. P., Leiser, O. P., Nakhleh, L., Gibbons, H. S., Kreuzer, H. W., and Shamoo, Y. (2014) Mutations in global regulators lead to metabolic selection during adaptation to complex environments, PLoS Genet., 10, e1004872, https://doi.org/10.1371/journal.pgen.1004872.
  21. Veeravalli, K., Boyd, D., Iverson, B. L., Beckwith, J., and Georgiou, G. (2011) Laboratory evolution of glutathi-one biosynthesis reveals natural compensatory pathways, Nat. Chem. Biol., 7, 101-105, https://doi.org/10.1038/nchembio.499.
  22. Elena, S. F., and Lenski, R. E. (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation, Nat Rev., 4, 457-469, https://doi.org/10.1038/nrg1088.
  23. Maeda, T., Iwasawa, J., Kotani, H., Sakata, N., Kawada, M., Horinouchi, T., Sakai, A., Tanabe, K., and Furusawa, C.(2020) High-throughput laboratory evolution reveals evolutionary constraints in Escherichia coli, Nat. Commun., 11, 5970, https://doi.org/10.1038/s41467-020-19713-w.
  24. Du, B., Olson, C. A., Sastry, A. V., Fang, X., Phaneuf, P. V., Chen, K., Wu, M., Szubin, R., Xu, S., Gao, Y., Hefner,  Y., Feist, A. M., and Palsson, B. O. (2020) Adaptive laboratory evolution of Escherichia coli under acid stress, Mi-crobiology, 166, 141-148, https://doi.org/10.1099/mic.0.000867.
  25. Lu, Q., Zhou, X. L., and Liu, J. Z. (2022) Adaptive laboratory evolution and shuffling of Escherichia coli to enhance its tolerance and production of astaxanthin, Biotechnol. Biofuels, 15, 17, https://doi.org/10.1186/s13068-022-02118-w.
  26. Kudryavtseva, O. A., Safina, K. R., Vakhrusheva, O. A., Logacheva, M. D., Penin, A. A., Neretina, T. V., Moskalenko, V. N., Glagoleva, E. S., Bazykin, G. A., and Kondrashov, A. S. (2019) Genetics of adaptation of the ascomyce-tous fungus Podospora anserina to submerged cultivation, Genome Biol. Evol., 11, 2807-2817, https://doi.org/ 10.1093/gbe/evz194.
  27. Fisher, K. J., and Lang, G. I. (2016) Experimental evolution in fungi: an untapped resource, Fungal Genet. Biol., 94, 88-94, https://doi.org/10.1016/j.fgb.2016.06.007.
  28. Gladieux, P., Ropars, J., Badouin, H., Branca, A., Aguileta, G., de Vienne, D. M., de la Vega, R. R. C., Branco, S., and Giraud, T. (2014) Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes, Mol. Ecol., 23, 753-773, https://doi.org/10.1111/mec.12631.
  29. 29. McDonald, M. J., Rice, D. P., and Desai, M. M. (2016) Sex speeds adaptation by altering the dynamics of molecular evolution, Nature, 531, 233-236, https://doi.org/10.1038/nature17143.
  30. Schoustra, S. E., Debets, A. J. M., Slakhorst, M., and Hoekstra, R. F. (2007) Mitotic recombination accel-erates adaptation in the fungus Aspergillus nidulans, PLoS Genet., 3, e68, https://doi.org/10.1371/journal. pgen.0030068.
  31. McDonald, M. J. (2019) Microbial experimental evolution – a proving ground for evolutionary theory and a tool for discovery, EMBO Rep., 20, e46992, https://doi.org/10.15252/embr.201846992.
  32. Gostinčar, C., Stajich, J. E., Kejžar, A., Sinha, S., Nislow, C., Lenassi, M., and Gunde-Cimerman, N. (2021) Seven years at high salinity  – experimental evolution of the extremely halotolerant black yeast Hortaea werneckii, J. Fungi, 7, 723, https://doi.org/10.3390/jof7090723.
  33. Kudryavtseva, O. A., Gerasimov, E. S., Glagoleva, E. S., Gasparyan, A. A., Agroskin, S. M., Belozersky, M. A., and Dunaevsky, Y. E. (2023) Dynamics of Podospora anserine genome evolution in a long-term experiment, Int.  J. Mol. Sci., 24, 12009, https://doi.org/10.3390/ijms241512009.
  34. Bodinaku, I., Shaffer, J., Connors, A. B., Steenwyk, J. L., Biango-Daniels, M. N., Kastman, E. K., Rokas, A., Robbat, A., and Wolfe, B. E. (2019) Rapid phenotypic and metabolomic domestication of wild penicillium molds on cheese, Mbio, 10, e02445-19, https://doi.org/10.1128/mBio.02445-19.
  35. Du, Z.-Y., Zienkiewicz, K., Pol, N. V., Ostrom, N. E., Benning, C., and Bonito, G. M. (2019) Algal-fungal symbiosis leads to photosynthetic mycelium, Elife, 8, e47815, https://doi.org/10.7554/eLife.47815.
  36. Helsen, J., Voordeckers, K., Vanderwaeren, L., Santermans, T., Tsontaki, M., Verstrepen, K. J., and Jelier, R. (2020) Gene loss predictably drives evolutionary adaptation, Mol. Biol. Evol., 37, 2989-3002, https://doi.org/10.1093/molbev/msaa172.
  37. Klim, J., Zielenkiewicz, U., and Kaczanowski, S. (2024) Loss-of-function mutations are main drivers of adaptations during short-term evolution, Sci. Rep., 14, 7128, https://doi.org/10.1038/s41598-024-57694-8.
  38. Reyes, L. H., Gomez, J. M., and Kao, K. C. (2014) Improving carotenoids production in yeast via adaptive labo-ratory evolution, Metab. Eng., 21, 26-33, https://doi.org/10.1016/j.ymben.2013.11.002.
  39. Yoneda, A., Henson, W. R., Goldner, N. K., Park, K. J., Forsberg, K. J., Kim, S. J., Pesesky, M. W., Foston, M., Dantas, G., and Moon, T. S. (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and uti-lization in lipid-accumulating Rhodococcus opacus PD630, Nucleic Acids Res., 44, 2240-2254, https://doi.org/ 10.1093/nar/gkw055.
  40. Patel, V., and Matange, N. (2021) Adaptation and compensation in a bacterial gene regulatory network evolving under antibiotic selection, eLife, 10, e70931, https://doi.org/10.7554/eLife.70931.
  41. Ratcliff, W. C., Fankhauser, J. D., Rogers, D. W., Greig, D., and Travisano, M. (2015) Origins of multicellular evolvability in snowflake yeast, Nat. Commun., 6, 6102, https://doi.org/10.1038/ncomms7102.
  42. Oud, B., Guadalupe-Medina, V., Nijkamp, J. F., de Ridder, D., Pronk, J. T., van Maris, A. J., and Daran, J.-M.(2013) Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 110, E4223-E4231, https://doi.org/10.1073/pnas. 1305949110.
  43. Michod, R. E., and Nedelcu, A. M. (2003) On  the  reorganization of fitness during evolutionary transitions in individuality, Integr. Comp. Biol., 43, 64-73, https://doi.org/10.1093/icb/43.1.64.
  44. Michod, R. E., Viossat, Y., Solari, C. A., Hurand, M., and Nedelcu, A. M. (2006) Life-history evolution and the origin of multicellularity, J.  Theor. Biol., 239, 257-272, https://doi.org/10.1016/j.jtbi.2005.08.043.
  45. Ratcliff, W. C., Denison, R. F., Borrello, M., and Travisano, M. (2012) Experimental evolution of multicellularity, Proc. Natl. Acad. Sci. USA, 109, 1595-1600, https://doi.org/10.1073/pnas.1115323109.
  46. Pentz, J. T., Taylor, B. P., and Ratcliff, W. C. (2016) Apoptosis in snowflake yeast: novel trait, or side effect of toxic waste? J.  R. Soc. Interface, 13, 20160121, https://doi.org/10.1098/rsif.2016.0121.
  47. Bozdag, G. O., Libby, E., Pineau, R., Reinhard, C. T., and Ratcliff, W. C. (2021) Oxygen suppression of macroscopic multicellularity, Nat. Commun., 12, 2838, https://doi.org/10.1038/s41467-021-23104-0.
  48. Pineau, R. M., Libby, E., Demory, D., Lac, D. T., Day, T. C., Bravo, P., Yunker, P. J., Weitz, J. S., Bozdag, G. O., and Ratcliff, W. C. (2024) Emergence and maintenance of stable coexistence during a long-term multicellular evo-lution experiment, Nat. Ecol. Evol., 8, 1010-1020, https://doi.org/10.1038/s41559-024-02367-y.
  49. Lenski, R. E. (2023) Revisiting the design of the long-term evolution experiment with Escherichia coli, J.  Mol. Evol., 91, 241-253, https://doi.org/10.1007/s00239-023-10095-3.
  50. Deatherage, D. E., Kepner, J. L., Bennett, A. F., Lenski, R. E., and Barrick, J. E. (2017) Specificity of genome evo-lution in experimental populations of Escherichia coli evolved at different temperatures, Proc. Natl. Acad. Sci. USA, 114, 1904-1912, https://doi.org/10.1073/pnas.1616132114.
  51. Lenski, R. E. (2017) Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations, ISME  J., 11, 2181-2194, https://doi.org/10.1038/ismej.2017.69.
  52. 52. Izutsu, M., and Lenski, R. E. (2022) Experimental test of the contributions of initial variation and new mu-tations to adaptive evolution in a novel environment, Front. Ecol. Evol., 10, 958406, https://doi.org/10.3389/fevo.2022.958406.
  53. Blount, Z. D., Barrick, J. E., Davidson, C. J., and Lenski, R. E. (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population, Nature, 489, 513-518, https://doi.org/10.1038/nature11514.
  54. Blount, Z. D., Maddamsetti, R., Grant, N. A., Ahmed, S. T., Jagdish, T., Baxter, J. A., Sommerfeld, B. A., Tillman, A., Moore, J., Slonczewski, J. L., Barrick, J. E., and Lenski, R. E. (2020) Genomic and phenotypic evolution of Escherichia coli in a novel citrate-only resource environment, Elife, 9, e55414, https://doi.org/10.7554/eLife.55414.
  55. Behringer, M. G., Choi, B. I., Miller, S. F., Doak, T. G., Karty, J. A., Guo, W., and Lynch, M. (2018) Escherichia coli cultures maintain stable subpopulation structure during long-term evolution, Proc. Natl. Acad. Sci. USA, 115, E4642-E4650, https://doi.org/10.1073/pnas.1708371115.
  56. Fisher, K. J., Buskirk, S. W., Vignogna, R. C., Marad, D. A., and Lang, G. I. (2018) Adaptive genome duplica-tion affects patterns of molecular evolution in Saccharomyces cerevisiae, PLoS Genet., 14, e1007396, https://doi.org/10.1371/journal.pgen.1007396.
  57. Marad, D. A., Buskirk, S. W., and Lang, G. I. (2018) Altered access to beneficial mutations slows adaptation and biases fixed mutations in diploids, Nat. Ecol. Evol., 2, 882-889, https://doi.org/10.1038/s41559-018-0503-9.
  58. Zeyl, C., Vanderford, T., and Carter, M. (2003) An evolutionary advantage of haploidy in large yeast populations, Science, 299, 555-558, https://doi.org/10.1126/science.1078417.
  59. Gerstein, A. C., Cleathero, L. A., Mandegar, M. A., and Otto, S. P. (2011) Haploids adapt faster than diploids across a range of environments, J.  Evol. Biol., 24, 531-540, https://doi.org/10.1111/j.1420-9101.2010.02188.x.
  60. Johnson, M. S., and Desai, M. M. (2022) Mutational robustness changes during long-term adaptation in laboratory budding yeast populations, Elife, 11, e76491, https://doi.org/10.7554/eLife.76491.
  61. Marshall, D. J., Lines, T., and McDonald, M. J. (2022) Long-term experimental evolution decouples size and production costs in Escherichia coli, Proc. Natl. Acad. Sci. USA, 119, e2200713119, https://doi.org/10.1073/pnas.2200713119.
  62. Hershberg, R. (2017). Antibiotic-independent adaptive effects of antibiotic resistance mutations, Trends Genet., 33, 521-528, https://doi.org/10.1016/j.tig.2017.05.003.
  63. Cohen, Y., and Hershberg, R. (2022) Rapid adaptation often occurs through mutations to the most highly con-served positions of the RNA polymerase core enzyme, Genome Biol. Evol., 14, evac105, https://doi.org/10.1093/gbe/evac105.
  64. Lenski, R. E., and Travisano, M. (1994) Dynamics of adaptation and diversification: a 10,000-generation experi-ment with bacterial populations, Proc. Natl. Acad. Sci. USA, 91, 6808-6814, https://doi.org/10.1073/pnas.91.15.6808.
  65. Philippe, N., Pelosi, L., Lenski, R. E., and Schneider, D. (2009) Evolution of penicillin-binding protein  2 concen-tration and cell shape during a long-term experiment with Escherichia coli, J.  Bacteriol., 191, 909-921, https://doi.org/10.1128/JB.01419-08.
  66. Leiby, N., and Marx, C. J. (2014) Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli, PLoS Biol., 12, e1001789, https://doi.org/10.1371/journal.pbio.1001789.
  67. Lee, D. H., and Palsson, B. (2010) Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a Nonnative carbon source, L-1, 2-propanediol, Appl. Environ. Microbiol., 76, 4158-4168, https://doi.org/10.1128/AEM.00373-10.
  68. Woods, R. J, Barrick, J. E., Cooper, T. F., Shrestha, U., Kauth, M. R., and Lenski, R. E. (2011) Second-order se-lection for evolvability in a large Escherichia coli population. Science, 331, 1433-1436, https://doi.org/10.1126/science.1198914.
  69. Elena, S. F., and Lenski, R. E. (1997) Long-term experimental evolution in Escherichia coli. 7.  Mechanisms maintaining genetic variability within populations, Evolution, 51, 1058-1067, https://doi.org/10.1111/j.1558-5646. 1997.tb03953.x.
  70. Draghi, J., Parsons, T., Wagner, G., and Plotkin, J. (2010) Mutational robustness can facilitate adaptation, Nature, 463, 353-355, https://doi.org/10.1038/nature08694.
  71. Herring, C., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., Albert, T. J., Blattner, F. R., van den Boom, D., Cantor, C. R., and Palsson, B. Ø. (2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale, Nat Genet, 38, 1406-1412, https://doi.org/ 10.1038/ng1906.
  72. Cooper, T. F., Remold, S. K., Lenski, R. E., and Schneider, D. (2008) Expression profiles reveal parallel evolution of epistatic interactions involving the CRP regulon in Escherichia coli, PLoS Genet., 4, e35, https://doi.org/10.1371/journal.pgen.0040035.
  73. 73. Henson, W. R., Campbell, T., DeLorenzo, D. M., Gao, Y., Berla, B., Kim, S. J., Foston, M., Moon, T. S., and Dantas, G.(2018). Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus, Metab. Eng., 49, 69-83, https://doi.org/10.1016/j.ymben.2018.06.009.
  74. Lee, S., and Kim, P. (2020) Current status and applications of adaptive laboratory evolution in industrial micro-organisms, J.  Microbiol. Biotechnol., 30, 793-803, https://doi.org/10.4014/jmb.2003.03072.
  75. Kim, K., Kang, M., Cho, S.-H., Yoo, E., Kim, U.-G., Cho, S., Palsson, B., and Cho, B.-K. (2023) Minireview: engi-neering evolution to reconfigure phenotypic traits in microbes for biotechnological applications, Comput. Struct. Biotechnol.  J., 21, 563-573, https://doi.org/10.1016/j.csbj.2022.12.042.
  76. Maddamsetti, R., Lenski, R. E., and Barrick, J. E. (2015) Adaptation, clonal interference, and frequency-depen-dent interactions in a long-term evolution experiment with Escherichia coli, Genetics, 200, 619-631, https://doi.org/10.1534/genetics.115.176677.
  77. Kao, K. C., and Sherlock, G., (2008) Molecular characterization of clonal interference during adaptive evo-lution in asexual populations of Saccharomyces cerevisiae, Nat. Genet., 40, 1499-1504, https://doi.org/ 10.1038/ng.280.
  78. Ene, I. V., Farrer, R. A., Hirakawa, M. P., Agwamba, K., Cuomo, C. A., and Bennett, R. J. (2018) Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen, Proc. Natl. Acad. Sci. USA, 115, E8688-E8697, https://doi.org/10.1073/pnas.1806002115.
  79. Chang, S.-L., Lai, H.-Y., Tung, S.-Y., and Leu, J.-Y., (2013) Dynamic large-scale chromosomal rearrange-ments fuel rapid adaptation in yeast populations, PLoS Genet., 9, e1003232, https://doi.org/10.1371/journal. pgen.1003232.
  80. Jin, C., Hou, W., Yao, R., Zhou, P., Zhang, H., and Bao, J. (2019) Adaptive evolution of Gluconobacter oxydans accelerates the conversion rate of non-glucose sugars derived from lignocellulose biomass, Biores. Technol., 289, 121623, https://doi.org/10.1016/j.biortech.2019.121623.
  81. Zhu, C., You, X., Wu, T., Li, W., Chen, H., Cha, Y., Zhuo, M., Chen, B., and Li, S. (2022) Efficient utilization of car-bon to produce aromatic valencene in Saccharomyces cerevisiae using mannitol as the substrate, Green Chem., 24, 4614-4627, https://doi.org/10.1039/D2GC00867J.
  82. Matson, M. M., Cepeda, M. M., Zhang, A., Case, A. E., Kavvas, E. S., Wang, X., Carroll, A. L., Tagkopoulos, I., and Atsumi, S. (2022) Adaptive laboratory evolution for improved tolerance of isobutyl acetate in Escherichia coli, Metab. Eng., 69, 50-58, https://doi.org/10.1016/j.ymben.2021.11.002.
  83. Cavero-Olguin, V. H., Rahimpour, F., Dishisha, T., Alvarez-Aliaga, M. T., and Hatti-Kaul, R. (2021) Propionic acid production from glycerol in immobilized cell bioreactor using an acid-tolerant strain of Propionibacte-rium acidipropionici obtained by adaptive evolution. Process Biochem., 110, 223-230, https://doi.org/10.1016/j.procbio.2021.08.005.
  84. Kim, Y. Y., Kim, J. C., Kim, S., Yang, J. E., Kim, H. M., and Park, H. W. (2024) Heterotypic stress-induced adaptive evolution enhances freeze-drying tolerance and storage stability of Leuconostoc mesenteroides WiKim33, Food Res. Int., 175, 113731, https://doi.org/10.1016/j.foodres.2023.113731.
  85. Hartono, S., Meijerink, M. F. A., Abee, T., Smid, E. J., and van Mastrigt, O. (2023) The  stressostat: a novel ap-proach in adaptive laboratory evolution to improve end-product resistance, New Biotechnol., 78, 123-130, https://doi.org/10.1016/j.nbt.2023.10.010.
  86. Gong, A., Liu, W., Lin, Y., Huang, L., and Xie, Z. (2023) Adaptive laboratory evolution reveals the selenium efflux process to improve selenium tolerance mediated by the membrane sulfite pump in Saccharomyces cer-evisiae, Microbiol. Spectrum, 11, e0132623, https://doi.org/10.1128/spectrum.01326-23, https://doi.org/10.1128/spectrum.01326-23.
  87. Yao, L., Jia, Y., Zhang, Q., Zheng, X., Yang, H., Dai, J., and Chen, X. (2024) Adaptive laboratory evolution to obtain furfural tolerant Saccharomyces cerevisiae for bioethanol production and the underlying mechanism, Front. Microbiol., 14, 1333777, https://doi.org/10.3389/fmicb.2023.1333777.
  88. Wang, G., Li, Q., Zhang, Z., Yin, X., Wang, B., and Yang, X. (2023) Recent progress in adaptive laborato-ry evolution of industrial microorganisms, J.  Ind. Microbiol. Biotechnol., 50, kuac023, https://doi.org/10.1093/jimb/kuac023.
  89. Kayacan, Y., Mieghem, T. V., Delvaux, F., Delvaux, F. R., and Willaert, R. (2020) Adaptive evolution of in-dustrial brewer’s yeast strains towards a snowflake phenotype, Fermentation, 6, 20, https://doi.org/10.3390/fermentation6010020.
  90. Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., and Whitlock, M. C. (2012) Experimental evolution, Trends Ecol. Evol., 27, 547-560, https://doi.org/10.1016/j.tree.2012.06.001.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».